Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
Immunol Rev. 2021 Mar;300(1):65-81. doi: 10.1111/imr.12935. Epub 2020 Dec 7.
Once alerted to the presence of a pathogen, activated CD4 T cells initiate distinct gene expression programs that produce multiple functionally specialized T helper (Th) subsets. The cytokine milieu present at the time of antigen encounter instructs CD4 T cells to differentiate into interferon-(IFN)-γ-producing Th1 cells, interleukin-(IL)-4-producing Th2 cells, IL-17-producing Th17 cells, follicular T helper (Tfh) cells, or regulatory T (Treg) cells. In each of these Th cell subsets, a single transcription factor has been identified as a critical regulator of its specialized differentiation program. In this context, the expression of the "master regulator" is necessary and sufficient to activate lineage-specific genes while restricting the gene expression program of alternative Th fates. Thus, the transcription factor T-bet controls Th1 differentiation program, while the development of Th2, Th17, Tfh, and Treg cells is dependent on transcription factors GATA3, RORγt, Bcl6, and Foxp3, respectively. Nevertheless, master regulators or, more precisely, lineage-defining transcription factors do not function in isolation. In fact, they interact with a complex network of transcription factors, orchestrating cell lineage specification programs. In this review, we discuss the concept of the combinatorial interactions of key transcription factors in determining helper T cell identity. Additionally, lineage-defining transcription factors have well-established functions beyond their role in CD4 Th subsets. They play critically important functions at distinct stages during T cell development in the thymus and they control the development of innate lymphoid cells (ILCs) in the bone marrow. In tracking the journey of T cells traversing from the thymus to the periphery and during the immune response, we discuss in broad terms developmental stage and context-dependent functions of lineage-defining transcription factors in regulating specification programs of innate and adaptive lymphocytes.
一旦被病原体激活,激活的 CD4 T 细胞就会启动不同的基因表达程序,产生多种具有不同功能的辅助性 T 细胞(Th)亚群。在抗原接触时存在的细胞因子微环境指导 CD4 T 细胞分化为产生干扰素-(IFN)-γ的 Th1 细胞、产生白细胞介素-(IL)-4 的 Th2 细胞、产生白细胞介素-17(IL-17)的 Th17 细胞、滤泡辅助性 T(Tfh)细胞或调节性 T(Treg)细胞。在这些 Th 细胞亚群中的每一种中,都已经鉴定出一个单一的转录因子作为其特化分化程序的关键调节因子。在这种情况下,“主调控因子”的表达对于激活谱系特异性基因是必要的且充分的,同时限制了替代 Th 命运的基因表达程序。因此,转录因子 T-bet 控制 Th1 分化程序,而 Th2、Th17、Tfh 和 Treg 细胞的发育则分别依赖于转录因子 GATA3、RORγt、Bcl6 和 Foxp3。然而,主调控因子或更准确地说是谱系定义转录因子并非孤立地发挥作用。实际上,它们与转录因子的复杂网络相互作用,协调细胞谱系特异性程序。在这篇综述中,我们讨论了关键转录因子的组合相互作用在决定辅助性 T 细胞特征中的概念。此外,谱系定义转录因子在其作为 CD4 Th 亚群中的作用之外具有既定的功能。它们在胸腺中 T 细胞发育的不同阶段以及在骨髓中调节先天淋巴细胞(ILC)的发育中发挥至关重要的作用。在追踪 T 细胞从胸腺到外周的旅程以及在免疫反应中,我们从广义上讨论了谱系定义转录因子在调节先天和适应性淋巴细胞特异性程序中的发育阶段和上下文相关功能。
Int J Mol Sci. 2020-10-28
Fac Rev. 2021-3-15
Protein Cell. 2017-4
Zhong Nan Da Xue Xue Bao Yi Xue Ban.