Suppr超能文献

基于肽的凝聚物作为仿生原细胞。

Peptide-based coacervates as biomimetic protocells.

机构信息

Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.

出版信息

Chem Soc Rev. 2021 Mar 21;50(6):3690-3705. doi: 10.1039/d0cs00307g. Epub 2021 Feb 22.

Abstract

Coacervates are condensed liquid-like droplets formed by liquid-liquid phase separation of molecules through multiple weak associative interactions. In recent years it has emerged that not only long polymers, but also short peptides are capable of forming simple and complex coacervates. The coacervate droplets they form act as compartments that sequester and concentrate a wide range of solutes, and their spontaneous formation make coacervates attractive protocell models. The main advantage of peptides as building blocks lies in the functional diversity of the amino acid residues, which allows for tailoring of the peptide's phase separation propensity, their selectivity in guest molecule uptake and the physicochemical and catalytic properties of the compartments. The aim of this tutorial review is to illustrate the recent developments in the field of peptide-based coacervates in a systematic way and to deduce the basic requirements for both simple and complex coacervation of peptides. We review a selection of peptide coacervates that illustrates the essentials of phase separation, the limitations, and the properties that make peptide coacervates biomimetic protocells. Finally, we provide some perspectives of this novel research field in the direction of active droplets, moving away from thermodynamic equilibrium.

摘要

凝聚物是通过分子间的多种弱相互作用发生液-液相分离而形成的浓缩液相液滴。近年来的研究表明,不仅长聚合物,而且短肽也能够形成简单和复杂的凝聚物。它们形成的凝聚物液滴作为隔室,隔离并浓缩广泛的溶质,而且它们的自发形成使凝聚物成为有吸引力的原细胞模型。肽作为构建块的主要优势在于氨基酸残基的功能多样性,这允许对肽的相分离倾向、对客体分子摄取的选择性以及隔室的物理化学和催化性质进行定制。本综述的目的是以系统的方式说明基于肽的凝聚物领域的最新进展,并推导出简单和复杂的肽凝聚的基本要求。我们综述了一系列肽凝聚物,说明了相分离的要点、局限性以及使肽凝聚物成为仿生原细胞的特性。最后,我们从热力学平衡的角度出发,为这个新的研究领域提供了一些关于活性液滴的展望。

相似文献

1
Peptide-based coacervates as biomimetic protocells.
Chem Soc Rev. 2021 Mar 21;50(6):3690-3705. doi: 10.1039/d0cs00307g. Epub 2021 Feb 22.
2
Selective amide bond formation in redox-active coacervate protocells.
Nat Commun. 2023 Dec 21;14(1):8492. doi: 10.1038/s41467-023-44284-x.
3
Fatty Acid-Based Coacervates as a Membrane-free Protocell Model.
Bioconjug Chem. 2022 Mar 16;33(3):444-451. doi: 10.1021/acs.bioconjchem.1c00559. Epub 2022 Feb 9.
4
How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments.
Acc Chem Res. 2024 Jul 16;57(14):1885-1895. doi: 10.1021/acs.accounts.4c00114. Epub 2024 Jul 5.
6
A short peptide synthon for liquid-liquid phase separation.
Nat Chem. 2021 Nov;13(11):1046-1054. doi: 10.1038/s41557-021-00788-x. Epub 2021 Oct 11.
7
Peptide-based coacervates in therapeutic applications.
Front Bioeng Biotechnol. 2023 Jan 4;10:1100365. doi: 10.3389/fbioe.2022.1100365. eCollection 2022.
8
Peptide-Based Coacervate-Core Vesicles with Semipermeable Membranes.
Adv Mater. 2022 Aug;34(34):e2202913. doi: 10.1002/adma.202202913. Epub 2022 Jul 22.
9
Coacervate Droplets for Synthetic Cells.
Small Methods. 2023 Dec;7(12):e2300496. doi: 10.1002/smtd.202300496. Epub 2023 Jul 18.
10
Physicochemical Characterization of Polymer-Stabilized Coacervate Protocells.
Chembiochem. 2019 Oct 15;20(20):2643-2652. doi: 10.1002/cbic.201900195. Epub 2019 Jul 25.

引用本文的文献

2
Stabilizing Water-in-Water Emulsions Using Oil Droplets.
Molecules. 2025 Jul 25;30(15):3120. doi: 10.3390/molecules30153120.
3
Adaptive peptide dispersions enable drying-induced biomolecule encapsulation.
Nat Mater. 2025 Aug 5. doi: 10.1038/s41563-025-02300-z.
4
Dendritic Membranized Coacervate Microdroplets: A Robust Platform for Synthetic-Living Cell Consortia.
J Am Chem Soc. 2025 Aug 13;147(32):29457-29467. doi: 10.1021/jacs.5c09772. Epub 2025 Aug 2.
5
Alteration in the Sensitivity of Firefly Bioluminescence to pH Driven by Molecular Recruitment to Coacervate Droplets.
ACS Omega. 2025 Jun 9;10(24):25313-25321. doi: 10.1021/acsomega.4c11259. eCollection 2025 Jun 24.
6
Smart coacervate microdroplets: biomimetic design, material innovations, and emerging applications in biomacromolecule delivery.
Bioact Mater. 2025 Jun 10;52:244-270. doi: 10.1016/j.bioactmat.2025.06.016. eCollection 2025 Oct.
9
Engineering Liquid Hierarchical Materials with DNA-Programmed Spherical Nucleic Acids.
Adv Sci (Weinh). 2025 Aug;12(31):e04471. doi: 10.1002/advs.202504471. Epub 2025 Jun 5.
10
Tailoring Peptide Coacervates for Advanced Biotechnological Applications: Enhancing Control, Encapsulation, and Antioxidant Properties.
ACS Appl Mater Interfaces. 2025 May 28;17(21):31561-31574. doi: 10.1021/acsami.5c02367. Epub 2025 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验