Suppr超能文献

我的数据,我的选择?——德国患者组织对个性化医学中大数据驱动方法的态度。一项实证伦理研究。

My Data, My Choice? - German Patient Organizations' Attitudes towards Big Data-Driven Approaches in Personalized Medicine. An Empirical-Ethical Study.

机构信息

Department of Medical Ethics and History of Medicine, University Medical Center Göttingen, Göttingen, Germany.

Hamburg University of Applied Science, HAW Hamburg, Germany.

出版信息

J Med Syst. 2021 Feb 22;45(4):43. doi: 10.1007/s10916-020-01702-7.

Abstract

Personalized medicine (PM) operates with biological data to optimize therapy or prevention and to achieve cost reduction. Associated data may consist of large variations of informational subtypes e.g. genetic characteristics and their epigenetic modifications, biomarkers or even individual lifestyle factors. Present innovations in the field of information technology have already enabled the procession of increasingly large amounts of such data ('volume') from various sources ('variety') and varying quality in terms of data accuracy ('veracity') to facilitate the generation and analyzation of messy data sets within a short and highly efficient time period ('velocity') to provide insights into previously unknown connections and correlations between different items ('value'). As such developments are characteristics of Big Data approaches, Big Data itself has become an important catchphrase that is closely linked to the emerging foundations and approaches of PM. However, as ethical concerns have been pointed out by experts in the debate already, moral concerns by stakeholders such as patient organizations (POs) need to be reflected in this context as well. We used an empirical-ethical approach including a website-analysis and 27 telephone-interviews for gaining in-depth insight into German POs' perspectives on PM and Big Data. Our results show that not all POs are stakeholders in the same way. Comparing the perspectives and political engagement of the minority of POs that is currently actively involved in research around PM and Big Data-driven research led to four stakeholder sub-classifications: 'mediators' support research projects through facilitating researcher's access to the patient community while simultaneously selecting projects they preferably support while 'cooperators' tend to contribute more directly to research projects by providing and implemeting patient perspectives. 'Financers' provide financial resources. 'Independents' keep control over their collected samples and associated patient-related information with a strong interest in making autonomous decisions about its scientific use. A more detailed terminology for the involvement of POs as stakeholders facilitates the adressing of their aims and goals. Based on our results, the 'independents' subgroup is a promising candidate for future collaborations in scientific research. Additionally, we identified gaps in PO's knowledge about PM and Big Data. Based on these findings, approaches can be developed to increase data and statistical literacy. This way, the full potential of stakeholder involvement of POs can be made accessible in discourses around PM and Big Data.

摘要

个体化医学(PM)利用生物数据来优化治疗或预防措施,并降低成本。相关数据可能包括大量信息亚型的变化,例如遗传特征及其表观遗传修饰、生物标志物,甚至是个体生活方式因素。信息技术领域的现有创新已经能够处理来自各种来源的越来越多的此类数据(“数量”),并在数据准确性方面具有不同的质量(“真实性”),以促进在短时间内高效地生成和分析混乱的数据集,从而提供对不同项目之间以前未知的联系和相关性的洞察(“价值”)。由于这些发展是大数据方法的特征,因此大数据本身已成为一个重要的流行语,与 PM 的新兴基础和方法密切相关。然而,正如专家在辩论中指出的那样,道德问题也是一个关注点,患者组织(PO)等利益相关者的道德问题也需要在这种情况下得到反映。我们使用实证伦理方法,包括网站分析和 27 次电话访谈,深入了解德国 PO 对 PM 和大数据的看法。我们的研究结果表明,并非所有 PO 都是以相同的方式成为利益相关者。通过比较少数目前积极参与 PM 和大数据驱动研究的 PO 的观点和政治参与程度,我们将其分为四个利益相关者亚类:“调解者”通过促进研究人员与患者社区的联系,同时选择他们更愿意支持的项目,从而支持研究项目;“合作者”倾向于通过提供和实施患者观点,更直接地为研究项目做出贡献;“资助者”提供财务资源;“独立者”控制他们收集的样本及其相关的患者信息,并对自主决定其科学用途有着强烈的兴趣。为 PO 作为利益相关者的参与制定更详细的术语有助于实现他们的目标。基于我们的研究结果,“独立者”亚组是未来科学研究合作的有希望的候选者。此外,我们还发现 PO 对 PM 和大数据的了解存在差距。基于这些发现,可以开发方法来提高数据和统计知识水平。这样,就可以在围绕 PM 和大数据的讨论中利用 PO 利益相关者参与的全部潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7bc/7900081/69e145343de7/10916_2020_1702_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验