Department of Experimental Ophthalmology, Saarland University, Homburg/Saar, Germany.
Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany.
PLoS One. 2021 Feb 22;16(2):e0247048. doi: 10.1371/journal.pone.0247048. eCollection 2021.
To analyse corneal power based on a large optical coherence tomography dataset using raytracing, and to evaluate corneal power with respect to the corneal front apex plane for different definitions of best focus.
A large OCT dataset (10,218 eyes of 8,430 patients) from the Casia 2 (Tomey, Japan) was post-processed in MATLAB (MathWorks, USA). Using radius of curvature, corneal front and back surface asphericity, central corneal thickness, and pupil size (aperture) a bundle of rays was traced through the cornea. Various best focus definitions were tested: a) minimum wavefront error, b) root mean squared ray scatter, c) mean absolute ray scatter, and d) total spot diameter. All 4 target optimisation criteria were tested with each best focus plane. With the best-fit keratometer index the difference of corneal power and keratometric power was evaluated using a multivariate linear model.
The mean corneal powers for a/b/c/d were 43.02±1.61/42.92±1.58/42.91±1.58/42.94±1.59 dpt respectively. The root mean squared deviations of corneal power from keratometric power (nK = 1.3317/1.3309/1.3308/1.3311 for a/b/c/d) were 0.308/0.185/0.171/0.209 dpt. With the multivariate linear model the respective RMS error was reduced to 0.110/0.052/0.043/0.065 dpt (R² = 0.872/0.921/0.935/0.904).
Raytracing improves on linear Gaussian optics by considering the asphericity of both refracting surfaces and using Snell's law of refraction in preference to paraxial simplifications. However, there is no unique definition of best focus, and therefore the calculated corneal power varies depending on the definition of best focus. The multivariate linear model enabled more precise estimation of corneal power compared to the simple keratometer equation.
利用光线追踪技术,基于大型光学相干断层扫描(OCT)数据集分析角膜屈光力,并评估不同最佳焦点定义下角膜屈光力与角膜前顶点平面的关系。
对来自日本 Tomey 的 Casia 2(Casia 2)的大型 OCT 数据集(10218 只眼,8430 例患者)进行后处理,使用曲率半径、角膜前后面非球面性、中央角膜厚度和瞳孔大小(孔径),通过角膜追踪一束光线。测试了各种最佳焦点定义:a)最小波前像差,b)均方根射线散射,c)平均绝对射线散射,d)总光斑直径。用 4 种目标优化标准测试了所有最佳焦点平面。使用最佳拟合角膜曲率计指数,通过多元线性模型评估角膜屈光力与角膜曲率计屈光力的差异。
a/b/c/d 的平均角膜屈光力分别为 43.02±1.61/42.92±1.58/42.91±1.58/42.94±1.59 dpt。角膜屈光力与角膜曲率计屈光力(nK = 1.3317/1.3309/1.3308/1.3311 分别用于 a/b/c/d)的均方根偏差为 0.308/0.185/0.171/0.209 dpt。通过多元线性模型,各自的均方根误差降低至 0.110/0.052/0.043/0.065 dpt(R² = 0.872/0.921/0.935/0.904)。
光线追踪通过考虑两个折射面的非球面性,并优先使用斯涅尔折射定律而不是近轴简化,优于线性高斯光学。然而,最佳焦点没有唯一的定义,因此计算出的角膜屈光力取决于最佳焦点的定义。与简单的角膜曲率计方程相比,多元线性模型能够更精确地估计角膜屈光力。