Suppr超能文献

使用生成对抗网络对 TOF-MRA 斑块进行匿名和标记,以进行脑部血管分割。

Synthesizing anonymized and labeled TOF-MRA patches for brain vessel segmentation using generative adversarial networks.

机构信息

CLAIM - Charité Lab for AI in Medicine, Charité Universitätsmedizin Berlin, Germany; Department of Computer Engineering and Microelectronics, Computer Vision & Remote Sensing, Technical University Berlin, Berlin, Germany.

CLAIM - Charité Lab for AI in Medicine, Charité Universitätsmedizin Berlin, Germany; Department of Electrical Engineering and Computer Science, Technical University of Berlin, Berlin, Germany.

出版信息

Comput Biol Med. 2021 Apr;131:104254. doi: 10.1016/j.compbiomed.2021.104254. Epub 2021 Feb 15.

Abstract

Anonymization and data sharing are crucial for privacy protection and acquisition of large datasets for medical image analysis. This is a big challenge, especially for neuroimaging. Here, the brain's unique structure allows for re-identification and thus requires non-conventional anonymization. Generative adversarial networks (GANs) have the potential to provide anonymous images while preserving predictive properties. Analyzing brain vessel segmentation, we trained 3 GANs on time-of-flight (TOF) magnetic resonance angiography (MRA) patches for image-label generation: 1) Deep convolutional GAN, 2) Wasserstein-GAN with gradient penalty (WGAN-GP) and 3) WGAN-GP with spectral normalization (WGAN-GP-SN). The generated image-labels from each GAN were used to train a U-net for segmentation and tested on real data. Moreover, we applied our synthetic patches using transfer learning on a second dataset. For an increasing number of up to 15 patients we evaluated the model performance on real data with and without pre-training. The performance for all models was assessed by the Dice Similarity Coefficient (DSC) and the 95th percentile of the Hausdorff Distance (95HD). Comparing the 3 GANs, the U-net trained on synthetic data generated by the WGAN-GP-SN showed the highest performance to predict vessels (DSC/95HD 0.85/30.00) benchmarked by the U-net trained on real data (0.89/26.57). The transfer learning approach showed superior performance for the same GAN compared to no pre-training, especially for one patient only (0.91/24.66 vs. 0.84/27.36). In this work, synthetic image-label pairs retained generalizable information and showed good performance for vessel segmentation. Besides, we showed that synthetic patches can be used in a transfer learning approach with independent data. This paves the way to overcome the challenges of scarce data and anonymization in medical imaging.

摘要

匿名化和数据共享对于保护隐私和获取用于医学图像分析的大型数据集至关重要。这是一个巨大的挑战,特别是对于神经影像学而言。在这里,大脑独特的结构允许重新识别,因此需要非常规的匿名化。生成对抗网络(GAN)有可能提供匿名图像,同时保留预测属性。在分析脑血管分割时,我们在时间飞行(TOF)磁共振血管造影(MRA)斑块上训练了 3 个 GAN 来生成图像标签:1)深度卷积 GAN,2)带有梯度惩罚的 Wasserstein-GAN(WGAN-GP),3)带有谱归一化的 WGAN-GP(WGAN-GP-SN)。每个 GAN 生成的图像标签都用于训练 U-net 进行分割,并在真实数据上进行测试。此外,我们在第二个数据集上使用迁移学习应用了我们的合成斑块。对于多达 15 个患者的递增数量,我们评估了具有和不具有预训练的真实数据上模型的性能。所有模型的性能均通过 Dice 相似系数(DSC)和 Hausdorff 距离的 95 百分位数(95HD)进行评估。比较这 3 个 GAN,基于 WGAN-GP-SN 生成的合成数据训练的 U-net 在预测血管方面表现出最高的性能(DSC/95HD 0.85/30.00),与基于真实数据训练的 U-net(0.89/26.57)相媲美。与没有预训练相比,迁移学习方法在相同的 GAN 下显示出优越的性能,特别是对于只有一个患者的情况(0.91/24.66 与 0.84/27.36)。在这项工作中,合成图像标签对保留了可推广的信息,并在血管分割方面表现出良好的性能。此外,我们表明,合成斑块可以在具有独立数据的迁移学习方法中使用。这为克服医学成像中数据稀缺和匿名化的挑战铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验