Asadi Fawad, Angsuwatanakul Thanate, O'Reilly Jamie A
College of Biomedical Engineering, Rangsit University, Pathum Thani 12000, Thailand.
School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
IBRO Neurosci Rep. 2023 Dec 14;16:57-66. doi: 10.1016/j.ibneur.2023.12.002. eCollection 2024 Jun.
Gliomas observed in medical images require expert neuro-radiologist evaluation for treatment planning and monitoring, motivating development of intelligent systems capable of automating aspects of tumour evaluation. Deep learning models for automatic image segmentation rely on the amount and quality of training data. In this study we developed a neuroimaging synthesis technique to augment data for training fully-convolutional networks (U-nets) to perform automatic glioma segmentation. We used StyleGAN2-ada to simultaneously generate fluid-attenuated inversion recovery (FLAIR) magnetic resonance images and corresponding glioma segmentation masks. Synthetic data were successively added to real training data (n = 2751) in fourteen rounds of 1000 and used to train U-nets that were evaluated on held-out validation (n = 590) and test sets (n = 588). U-nets were trained with and without geometric augmentation (translation, zoom and shear), and Dice coefficients were computed to evaluate segmentation performance. We also monitored the number of training iterations before stopping, total training time, and time per iteration to evaluate computational costs associated with training each U-net. Synthetic data augmentation yielded marginal improvements in Dice coefficients (validation set +0.0409, test set +0.0355), whereas geometric augmentation improved generalization (standard deviation between training, validation and test set performances of 0.01 with, and 0.04 without geometric augmentation). Based on the modest performance gains for automatic glioma segmentation we find it hard to justify the computational expense of developing a synthetic image generation pipeline. Future work may seek to optimize the efficiency of synthetic data generation for augmentation of neuroimaging data.
医学图像中观察到的胶质瘤需要专业神经放射科医生进行评估,以制定治疗计划和进行监测,这推动了能够自动执行肿瘤评估某些方面的智能系统的开发。用于自动图像分割的深度学习模型依赖于训练数据的数量和质量。在本研究中,我们开发了一种神经影像合成技术,以扩充数据来训练全卷积网络(U-net),以执行自动胶质瘤分割。我们使用StyleGAN2-ada同时生成液体衰减反转恢复(FLAIR)磁共振图像和相应的胶质瘤分割掩码。在十四轮每次1000次的过程中,将合成数据相继添加到真实训练数据(n = 2751)中,并用于训练在留出的验证集(n = 590)和测试集(n = 588)上进行评估的U-net。在有和没有几何增强(平移、缩放和剪切)的情况下训练U-net,并计算Dice系数以评估分割性能。我们还监测了停止前的训练迭代次数、总训练时间和每次迭代的时间,以评估与训练每个U-net相关的计算成本。合成数据增强在Dice系数方面产生了微小的改进(验证集提高了0.0409,测试集提高了0.0355),而几何增强提高了泛化能力(有几何增强时训练、验证和测试集性能之间的标准差为0.01,没有几何增强时为0.04)。基于自动胶质瘤分割的适度性能提升,我们发现很难证明开发合成图像生成管道的计算成本是合理的。未来的工作可能会寻求优化合成数据生成的效率,以扩充神经影像数据。