Department of Engineering, Roma Tre University, Italy.
ASST-Papa Giovanni XIII Hospital, Bergamo, Italy.
Comput Methods Programs Biomed. 2021 Apr;202:106003. doi: 10.1016/j.cmpb.2021.106003. Epub 2021 Feb 14.
Simulation in cardiovascular medicine may help clinicians understand the important events occurring during mechanical ventilation and circulatory support. During the COVID-19 pandemic, a significant number of patients have required hospital admission to tertiary referral centres for concomitant mechanical ventilation and extracorporeal membrane oxygenation (ECMO). Nevertheless, the management of ventilated patients on circulatory support can be quite challenging. Therefore, we sought to review the management of these patients based on the analysis of haemodynamic and energetic parameters using numerical simulations generated by a software package named CARDIOSIM©.
New modules of the systemic circulation and ECMO were implemented in CARDIOSIM© platform. This is a modular software simulator of the cardiovascular system used in research, clinical and e-learning environment. The new structure of the developed modules is based on the concept of lumped (0-D) numerical modelling. Different ECMO configurations have been connected to the cardiovascular network to reproduce Veno-Arterial (VA) and Veno-Venous (VV) ECMO assistance. The advantages and limitations of different ECMO cannulation strategies have been considered. We have used literature data to validate the effects of a combined ventilation and ECMO support strategy.
The results have shown that our simulations reproduced the typical effects induced during mechanical ventilation and ECMO assistance. We focused our attention on ECMO with triple cannulation such as Veno-Ventricular-Arterial (VV-A) and Veno-Atrial-Arterial (VA-A) configurations to improve the hemodynamic and energetic conditions of a virtual patient. Simulations of VV-A and VA-A assistance with and without mechanical ventilation have generated specific effects on cardiac output, coupling of arterial and ventricular elastance for both ventricles, mean pulmonary pressure, external work and pressure volume area.
The new modules of the systemic circulation and ECMO support allowed the study of the effects induced by concomitant mechanical ventilation and circulatory support. Based on our clinical experience during the COVID-19 pandemic, numerical simulations may help clinicians with data analysis and treatment optimisation of patients requiring both mechanical ventilation and circulatory support.
心血管医学中的模拟可以帮助临床医生了解机械通气和循环支持过程中发生的重要事件。在 COVID-19 大流行期间,大量患者需要住院到三级转诊中心进行同时机械通气和体外膜氧合(ECMO)治疗。然而,对于接受循环支持的通气患者的管理可能具有挑战性。因此,我们试图基于使用 CARDIOSIM©软件包生成的血流动力学和能量参数的数值模拟来分析这些患者的管理。
在 CARDIOSIM©平台中实现了全身循环和 ECMO 的新模块。这是一个用于研究、临床和电子学习环境的心血管系统模块化软件模拟器。开发的新模块结构基于集中(0-D)数值建模的概念。已经将不同的 ECMO 配置连接到心血管网络以再现静脉动脉(VA)和静脉静脉(VV)ECMO 辅助。考虑了不同 ECMO 插管策略的优缺点。我们使用文献数据验证了联合通气和 ECMO 支持策略的效果。
结果表明,我们的模拟再现了机械通气和 ECMO 辅助过程中产生的典型影响。我们关注了类似于 Veno-Ventricular-Arterial(VV-A)和 Veno-Atrial-Arterial(VA-A)配置的三重插管 ECMO,以改善虚拟患者的血流动力学和能量状况。有和没有机械通气的 VV-A 和 VA-A 辅助的模拟产生了对心输出量、两个心室的动脉和心室弹性的耦联、平均肺动脉压、外部工作和压力-容积面积的特定影响。
全身循环和 ECMO 支持的新模块允许研究同时机械通气和循环支持引起的影响。基于我们在 COVID-19 大流行期间的临床经验,数值模拟可以帮助临床医生分析数据并优化需要机械通气和循环支持的患者的治疗。