Suppr超能文献

人体大脑的三维变形的自然振荡模式。

Natural oscillatory modes of 3D deformation of the human brain in vivo.

机构信息

Mechanical Engineering and Materials Science, Washington University in St. Louis, MO, United States.

Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States.

出版信息

J Biomech. 2021 Apr 15;119:110259. doi: 10.1016/j.jbiomech.2021.110259. Epub 2021 Feb 10.

Abstract

Natural modes and frequencies of three-dimensional (3D) deformation of the human brain were identified from in vivo tagged magnetic resonance images (MRI) acquired dynamically during transient mild acceleration of the head. Twenty 3D strain fields, estimated from tagged MRI image volumes in 19 adult subjects, were analyzed using dynamic mode decomposition (DMD). These strain fields represented dynamic, 3D brain deformations during constrained head accelerations, either involving rotation about the vertical axis of the neck or neck extension. DMD results reveal fundamental oscillatory modes of deformation at damped frequencies near 7 Hz (in neck rotation) and 11 Hz (in neck extension). Modes at these frequencies were found consistently among all subjects. These characteristic features of 3D human brain deformation are important for understanding the response of the brain in head impacts and provide valuable quantitative criteria for the evaluation and use of computer models of brain mechanics.

摘要

从动态采集的人体头部瞬时轻度加速过程中的标记磁共振图像(MRI)中识别出三维(3D)大脑变形的固有模态和固有频率。使用动态模式分解(DMD)分析了从 19 名成年受检者的标记 MRI 图像体积中估算的 20 个 3D 应变场。这些应变场代表了在头部受限加速过程中动态的、3D 的大脑变形,包括颈部绕垂直轴的旋转或颈部伸展。DMD 结果揭示了在颈部旋转时约 7 Hz(在颈部旋转时)和 11 Hz(在颈部伸展时)的阻尼频率附近的基本振荡变形模式。在所有受检者中都发现了这些频率的模式。这些 3D 人脑变形的特征对于理解头部撞击时大脑的反应非常重要,并为脑力学计算机模型的评估和使用提供了有价值的定量标准。

相似文献

1
Natural oscillatory modes of 3D deformation of the human brain in vivo.
J Biomech. 2021 Apr 15;119:110259. doi: 10.1016/j.jbiomech.2021.110259. Epub 2021 Feb 10.
3
Improved measurement of brain deformation during mild head acceleration using a novel tagged MRI sequence.
J Biomech. 2014 Nov 7;47(14):3475-81. doi: 10.1016/j.jbiomech.2014.09.010. Epub 2014 Sep 28.
5
In vivo estimates of axonal stretch and 3D brain deformation during mild head impact.
Brain Multiphys. 2020 Nov;1. doi: 10.1016/j.brain.2020.100015. Epub 2020 Sep 3.
6
Deformation of the human brain induced by mild angular head acceleration.
J Biomech. 2008;41(2):307-15. doi: 10.1016/j.jbiomech.2007.09.016. Epub 2007 Oct 24.
7
A Three-Dimensional Computational Human Head Model That Captures Live Human Brain Dynamics.
J Neurotrauma. 2017 Jul 1;34(13):2154-2166. doi: 10.1089/neu.2016.4744. Epub 2017 Apr 10.
8
Resonance of human brain under head acceleration.
J R Soc Interface. 2015 Jul 6;12(108):20150331. doi: 10.1098/rsif.2015.0331.
9
Relative brain displacement and deformation during constrained mild frontal head impact.
J R Soc Interface. 2010 Dec 6;7(53):1677-88. doi: 10.1098/rsif.2010.0210. Epub 2010 May 26.
10
A Weighted Head Accelerator Mechanism (WHAM) for visualizing brain rheology using magnetic resonance imaging.
J Neurosci Methods. 2022 Dec 1;382:109728. doi: 10.1016/j.jneumeth.2022.109728. Epub 2022 Oct 13.

引用本文的文献

1
Average Biomechanical Responses of the Human Brain Grouped by Age and Sex.
Ann Biomed Eng. 2025 Jun;53(6):1496-1511. doi: 10.1007/s10439-025-03725-y. Epub 2025 Apr 9.
2
Effects of anatomy and head motion on spatial patterns of deformation in the human brain.
Ann Biomed Eng. 2025 Apr;53(4):867-880. doi: 10.1007/s10439-024-03671-1. Epub 2024 Dec 31.
3
The Development of Non-Invasive Optical Brain Pulse Monitoring: A Review.
Med Devices (Auckl). 2024 Dec 11;17:491-511. doi: 10.2147/MDER.S498589. eCollection 2024.
4
Efficient Generation of Pretraining Samples for Developing a Deep Learning Brain Injury Model via Transfer Learning.
Ann Biomed Eng. 2024 Oct;52(10):2726-2740. doi: 10.1007/s10439-023-03354-3. Epub 2023 Aug 29.
7
MR Imaging of Human Brain Mechanics In Vivo: New Measurements to Facilitate the Development of Computational Models of Brain Injury.
Ann Biomed Eng. 2021 Oct;49(10):2677-2692. doi: 10.1007/s10439-021-02820-0. Epub 2021 Jul 1.

本文引用的文献

1
In vivo estimates of axonal stretch and 3D brain deformation during mild head impact.
Brain Multiphys. 2020 Nov;1. doi: 10.1016/j.brain.2020.100015. Epub 2020 Sep 3.
2
Displacement- and Strain-Based Discrimination of Head Injury Models across a Wide Range of Blunt Conditions.
Ann Biomed Eng. 2020 Jun;48(6):1661-1677. doi: 10.1007/s10439-020-02496-y. Epub 2020 Apr 2.
3
Investigation of Cross-Species Scaling Methods for Traumatic Brain Injury Using Finite Element Analysis.
J Neurotrauma. 2020 Jan 15;37(2):410-422. doi: 10.1089/neu.2019.6576. Epub 2019 Sep 20.
4
Insights Into Traumatic Brain Injury From MRI of Harmonic Brain Motion.
J Exp Neurosci. 2019 Apr 7;13:1179069519840444. doi: 10.1177/1179069519840444. eCollection 2019.
5
3-D Measurements of Acceleration-Induced Brain Deformation via Harmonic Phase Analysis and Finite-Element Models.
IEEE Trans Biomed Eng. 2019 May;66(5):1456-1467. doi: 10.1109/TBME.2018.2874591. Epub 2018 Oct 8.
7
Brain stiffens post mortem.
J Mech Behav Biomed Mater. 2018 Aug;84:88-98. doi: 10.1016/j.jmbbm.2018.04.009. Epub 2018 Apr 22.
8
Mechanistic Insights into Human Brain Impact Dynamics through Modal Analysis.
Phys Rev Lett. 2018 Mar 30;120(13):138101. doi: 10.1103/PhysRevLett.120.138101.
9
Mechanical properties of porcine brain tissue in vivo and ex vivo estimated by MR elastography.
J Biomech. 2018 Mar 1;69:10-18. doi: 10.1016/j.jbiomech.2018.01.016. Epub 2018 Jan 31.
10
Geriatric Traumatic Brain Injury: Epidemiology, Outcomes, Knowledge Gaps, and Future Directions.
J Neurotrauma. 2018 Apr 1;35(7):889-906. doi: 10.1089/neu.2017.5371. Epub 2018 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验