Suppr超能文献

新海藻二胺/卡那胺生物合成途径的激活对……代谢的影响。 (原文结尾不完整,翻译可能会因后续内容缺失而稍显突兀)

Impact of activation of neotrehalosadiamine/kanosamine biosynthetic pathway on the metabolism of .

作者信息

Saito Natsumi, Nguyen Huong Minh, Inaoka Takashi

机构信息

National Institute of Technology, Tsuruoka College, 104 Sawada, Inooka, Tsuruoka, Yamagata 997-8511, Japan.

Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam.

出版信息

J Bacteriol. 2021 May 1;203(9). doi: 10.1128/JB.00603-20. Epub 2021 Feb 22.

Abstract

The pentose phosphate (PP) pathway is one of the major sources of cellular NADPH. A mutant that lacks glucose-6-phosphate dehydrogenase (the enzyme that catalyzes the first step of the PP pathway) showed inoculum-dose-dependent growth. This growth defect was suppressed by disruption, which causes the upregulation of an autoinducer neotrehalosadiamine (NTD)/kanosamine biosynthetic pathway. A metabolome analysis showed that the stimulation of NTD/kanosamine biosynthesis caused significant accumulation of TCA cycle intermediates and NADPH. Because the major malic enzyme YtsJ concomitantly generates NADPH through malate-to-pyruvate conversion, NTD/kanosamine biosynthesis can result in an increase in the intracellular NADPH pool via the accumulation of malate. In fact, a mutant grew in malate-supplemented medium. Artificial induction of in the mutant caused a reduction in the intracellular NADPH pool. Moreover, the correlation between the expression level of the NTD/kanosamine biosynthesis operon and the intracellular NADPH pool was confirmed. Our results suggest that NTD/kanosamine has the potential to modulate the carbon-energy metabolism through an autoinduction mechanism.Autoinducers enable bacteria to sense cell density and to coordinate collective behavior. NTD/kanosamine is an autoinducer produced by and several close relatives, although its physiological function remains unknown. The most important finding of this study was the significance of NTD/kanosamine biosynthesis in the modulation of the central carbon metabolism in We showed that NTD/kanosamine biosynthesis caused an increase in the NADPH pool via the accumulation of TCA cycle intermediates. These results suggest a possible role for NTD/kanosamine in the carbon-energy metabolism. As species are widely used for the industrial production of various useful enzymes and compounds, the NTD/kanosamine biosynthetic pathway might be utilized to control metabolic pathways in these industrial strains.

摘要

磷酸戊糖(PP)途径是细胞内NADPH的主要来源之一。一个缺乏葡萄糖-6-磷酸脱氢酶(催化PP途径第一步的酶)的突变体表现出接种剂量依赖性生长。这种生长缺陷通过破坏得以抑制,破坏导致自诱导剂新海藻二胺(NTD)/甘露糖胺生物合成途径上调。代谢组分析表明,NTD/甘露糖胺生物合成的刺激导致三羧酸循环中间体和NADPH显著积累。由于主要的苹果酸酶YtsJ通过苹果酸向丙酮酸的转化同时产生NADPH,NTD/甘露糖胺生物合成可通过苹果酸的积累导致细胞内NADPH池增加。事实上,一个突变体在补充苹果酸的培养基中生长。在突变体中人工诱导导致细胞内NADPH池减少。此外,还证实了NTD/甘露糖胺生物合成操纵子的表达水平与细胞内NADPH池之间的相关性。我们的结果表明,NTD/甘露糖胺有可能通过自诱导机制调节碳能量代谢。自诱导剂使细菌能够感知细胞密度并协调集体行为。NTD/甘露糖胺是由[具体细菌名称]及其几个近亲产生的自诱导剂,尽管其生理功能尚不清楚。这项研究最重要的发现是NTD/甘露糖胺生物合成在调节[具体细菌名称]中心碳代谢中的重要性。我们表明,NTD/甘露糖胺生物合成通过三羧酸循环中间体的积累导致NADPH池增加。这些结果表明NTD/甘露糖胺在碳能量代谢中可能发挥作用。由于[具体细菌名称]物种被广泛用于各种有用酶和化合物的工业生产,NTD/甘露糖胺生物合成途径可能被用于控制这些工业菌株中的代谢途径。

相似文献

1
Impact of activation of neotrehalosadiamine/kanosamine biosynthetic pathway on the metabolism of .
J Bacteriol. 2021 May 1;203(9). doi: 10.1128/JB.00603-20. Epub 2021 Feb 22.
3
A previously unrecognized kanosamine biosynthesis pathway in Bacillus subtilis.
J Am Chem Soc. 2013 Apr 24;135(16):5970-3. doi: 10.1021/ja4010255. Epub 2013 Apr 15.
4
The kanosamine biosynthetic pathway in Bacillus cereus UW85: Functional and kinetic characterization of KabA, KabB, and KabC.
Arch Biochem Biophys. 2019 Nov 15;676:108139. doi: 10.1016/j.abb.2019.108139. Epub 2019 Oct 14.
5
Novel gene regulation mediated by overproduction of secondary metabolite neotrehalosadiamine in Bacillus subtilis.
FEMS Microbiol Lett. 2009 Feb;291(2):151-6. doi: 10.1111/j.1574-6968.2008.01450.x. Epub 2008 Dec 11.

引用本文的文献

1
Characterization of subtilosin gene in wild type Bacillus spp. and possible physiological role.
Sci Rep. 2022 Jun 22;12(1):10521. doi: 10.1038/s41598-022-13804-y.

本文引用的文献

1
Specificity and complexity in bacterial quorum-sensing systems.
FEMS Microbiol Rev. 2016 Sep;40(5):738-52. doi: 10.1093/femsre/fuw014. Epub 2016 Jun 26.
2
The Emergence of 2-Oxoglutarate as a Master Regulator Metabolite.
Microbiol Mol Biol Rev. 2015 Dec;79(4):419-35. doi: 10.1128/MMBR.00038-15.
3
Core principles of bacterial autoinducer systems.
Microbiol Mol Biol Rev. 2015 Mar;79(1):153-69. doi: 10.1128/MMBR.00024-14.
5
A previously unrecognized kanosamine biosynthesis pathway in Bacillus subtilis.
J Am Chem Soc. 2013 Apr 24;135(16):5970-3. doi: 10.1021/ja4010255. Epub 2013 Apr 15.
6
Bacterial quorum sensing: its role in virulence and possibilities for its control.
Cold Spring Harb Perspect Med. 2012 Nov 1;2(11):a012427. doi: 10.1101/cshperspect.a012427.
7
Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis.
J Biol Chem. 2010 Jan 15;285(3):1587-96. doi: 10.1074/jbc.M109.061747. Epub 2009 Nov 16.
9
Identification and characterization of a novel multidrug resistance operon, mdtRP (yusOP), of Bacillus subtilis.
J Bacteriol. 2009 May;191(10):3273-81. doi: 10.1128/JB.00151-09. Epub 2009 Mar 13.
10
Novel gene regulation mediated by overproduction of secondary metabolite neotrehalosadiamine in Bacillus subtilis.
FEMS Microbiol Lett. 2009 Feb;291(2):151-6. doi: 10.1111/j.1574-6968.2008.01450.x. Epub 2008 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验