Suppr超能文献

预测哺乳动物传播新冠病毒的人畜共患病能力。

Predicting the zoonotic capacity of mammals to transmit SARS-CoV-2.

作者信息

Fischhoff Ilya R, Castellanos Adrian A, Rodrigues João P G L M, Varsani Arvind, Han Barbara A

机构信息

Cary Institute of Ecosystem Studies. Box AB Millbrook, NY 12545, USA.

Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.

出版信息

bioRxiv. 2021 Jun 29:2021.02.18.431844. doi: 10.1101/2021.02.18.431844.

Abstract

Back and forth transmission of SARS-CoV-2 between humans and animals may lead to wild reservoirs of virus that can endanger efforts toward long-term control of COVID-19 in people, and protecting vulnerable animal populations that are particularly susceptible to lethal disease. Predicting high risk host species is key to targeting field surveillance and lab experiments that validate host zoonotic potential. A major bottleneck to predicting animal hosts is the small number of species with available molecular information about the structure of ACE2, a key cellular receptor required for viral cell entry. We overcome this bottleneck by combining species' ecological and biological traits with 3D modeling of virus and host cell protein interactions using machine learning methods. This approach enables predictions about the zoonotic capacity of SARS-CoV-2 for over 5,000 mammals - an order of magnitude more species than previously possible. The high accuracy predictions achieved by this approach are strongly corroborated by empirical studies. We identify numerous common mammal species whose predicted zoonotic capacity and close proximity to humans may further enhance the risk of spillover and spillback transmission of SARS-CoV-2. Our results reveal high priority areas of geographic overlap between global COVID-19 hotspots and potential new mammal hosts of SARS-CoV-2. With molecular sequence data available for only a small fraction of potential host species, predictive modeling integrating data across multiple biological scales offers a conceptual advance that may expand our predictive capacity for zoonotic viruses with similarly unknown and potentially broad host ranges.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)在人类和动物之间的来回传播可能会导致病毒的野生宿主库,这可能危及对人类长期控制2019冠状病毒病(COVID-19)所做的努力,也会威胁到对特别易患致命疾病的脆弱动物种群的保护。预测高风险宿主物种是确定实地监测和实验室实验目标的关键,这些监测和实验用于验证宿主的人畜共患病潜力。预测动物宿主的一个主要瓶颈是,关于血管紧张素转换酶2(ACE2)结构的分子信息可用的物种数量很少,ACE2是病毒进入细胞所需的关键细胞受体。我们通过将物种的生态和生物学特征与使用机器学习方法对病毒和宿主细胞蛋白质相互作用进行的三维建模相结合,克服了这一瓶颈。这种方法能够预测SARS-CoV-能够预测SARS-CoV-2对5000多种哺乳动物的人畜共患病能力——比以前可能的物种数量多一个数量级。通过实证研究有力地证实了这种方法所取得的高精度预测。我们识别出许多常见的哺乳动物物种,它们预测的人畜共患病能力以及与人类的密切接触可能会进一步增加SARS-CoV-2溢出和回溢传播的风险。我们的研究结果揭示了全球COVID-19热点地区与SARS-CoV-2潜在新哺乳动物宿主之间地理重叠的高优先区域。由于只有一小部分潜在宿主物种有分子序列数据,整合多个生物尺度数据的预测模型提供了一种概念上的进步,可能会扩大我们对宿主范围同样未知且可能广泛的人畜共患病病毒的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbdb/8259563/dc5c591e7ad0/nihpp-2021.02.18.431844v3-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验