State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
School of Life Science and Technology, ShanghaiTech University, 393 Middle Hua Xia Road, Shanghai 201210, China.
Nucleic Acids Res. 2021 Mar 18;49(5):2816-2834. doi: 10.1093/nar/gkab104.
GTPBP3 and MTO1 cooperatively catalyze 5-taurinomethyluridine (τm5U) biosynthesis at the 34th wobble position of mitochondrial tRNAs. Mutations in tRNAs, GTPBP3 or MTO1, causing τm5U hypomodification, lead to various diseases. However, efficient in vitro reconstitution and mechanistic study of τm5U modification have been challenging, in part due to the lack of pure and active enzymes. A previous study reported that purified human GTPBP3 (hGTPBP3) is inactive in GTP hydrolysis. Here, we identified the mature form of hGTPBP3 and showed that hGTPBP3 is an active GTPase in vitro that is critical for tRNA modification in vivo. Unexpectedly, the isolated G domain and a mutant with the N-terminal domain truncated catalyzed GTP hydrolysis to only a limited extent, exhibiting high Km values compared with that of the mature enzyme. We further described several important pathogenic mutations of hGTPBP3, associated with alterations in hGTPBP3 localization, structure and/or function in vitro and in vivo. Moreover, we discovered a novel cytoplasm-localized isoform of hGTPBP3, indicating an unknown potential noncanonical function of hGTPBP3. Together, our findings established, for the first time, the GTP hydrolysis mechanism of hGTPBP3 and laid a solid foundation for clarifying the τm5U modification mechanism and etiology of τm5U deficiency-related diseases.
GTPBP3 和 MTO1 协同催化线粒体 tRNA 第 34 位摆动位置的 5-牛磺酸甲基尿嘧啶(τm5U)生物合成。tRNA、GTPBP3 或 MTO1 突变导致 τm5U 修饰不足,可导致多种疾病。然而,由于缺乏纯的和活性的酶,有效的体外重新组装和机制研究一直具有挑战性。先前的一项研究报告称,纯化的人 GTPBP3(hGTPBP3)在 GTP 水解中无活性。在这里,我们鉴定了 hGTPBP3 的成熟形式,并表明 hGTPBP3 是体外的一种活性 GTPase,对体内 tRNA 修饰至关重要。出乎意料的是,分离的 G 结构域和截短 N 端结构域的突变体仅在有限程度上催化 GTP 水解,与成熟酶相比,Km 值较高。我们进一步描述了 hGTPBP3 的几种重要致病性突变,这些突变改变了 hGTPBP3 在体外和体内的定位、结构和/或功能。此外,我们发现了 hGTPBP3 的一种新型细胞质定位同工型,表明 hGTPBP3 具有未知的潜在非典型功能。总之,我们的发现首次建立了 hGTPBP3 的 GTP 水解机制,为阐明 τm5U 修饰机制和 τm5U 缺乏相关疾病的病因奠定了坚实的基础。