Qin Donglu, Hu Jiarui, Yang Yang, Li Xin, He Jia, Chen Jin, Guo Xin, Wei Cheng, Wang Fengjiao, Yi Ting, Li Chenyu, Yu Bilian
Department of Cardiovascular Medicine, The Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, NO.139 Middle Renmin Road, Changsha, 410011, Hunan, China.
Hunan Key Laboratory of Cardiometabolic Medicine, No. 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
Angiogenesis. 2025 Jun 18;28(3):36. doi: 10.1007/s10456-025-09994-4.
GTP binding protein 3 (GTPBP3) is a highly conserved enzyme involved in tRNA modification, is essential for 5-taurinomethyluridine (τmU) biosynthesis, and is linked to mitochondrial dysfunction within cells. However, the specific roles of GTPBP3 in different cell types during vascular development and angiogenesis are not well understood. In this study, we assess the physiological functions of GTPBP3 in endothelial cells (ECs) using two conditional knockout mouse models. GTPBP3 deletion, specifically in ECs, resulted in embryonic lethality owing to irregularities in angiogenesis and vascular formation. Tamoxifen-inducible EC-specific GTPBP3 knockout (Gtpbp3) mice show reduced retinal sprouting angiogenesis and impaired neovascularization after limb ischemia. Mechanistically, GTPBP3 absence in ECs leads to mitochondrial dysfunction and an increase in mitochondrial reactive oxygen species (mtROS), which alters Heme-regulated eIF2α kinase (HRI)-activating transcription factor 4 (ATF4)-Sestrin2 pathway expression, inhibiting activation of the mTORC1 pathway and angiogenesis. However, treatment with MitoQ-an mtROS scavenger-improves angiogenic dysfunction. These results highlight GTPBP3 as a vital element for developmental angiogenesis and neovascularization after limb ischemia.
GTP结合蛋白3(GTPBP3)是一种参与tRNA修饰的高度保守的酶,对5-牛磺甲基尿苷(τmU)的生物合成至关重要,并且与细胞内的线粒体功能障碍有关。然而,GTPBP3在血管发育和血管生成过程中在不同细胞类型中的具体作用尚不清楚。在本研究中,我们使用两种条件性敲除小鼠模型评估GTPBP3在内皮细胞(ECs)中的生理功能。GTPBP3的缺失,特别是在ECs中,由于血管生成和血管形成的异常导致胚胎致死。他莫昔芬诱导的EC特异性GTPBP3敲除(Gtpbp3)小鼠显示视网膜发芽血管生成减少,肢体缺血后新生血管形成受损。从机制上讲,ECs中GTPBP3的缺失导致线粒体功能障碍和线粒体活性氧(mtROS)增加,这改变了血红素调节的eIF2α激酶(HRI)-激活转录因子4(ATF4)-Sestrin2途径的表达,抑制mTORC1途径的激活和血管生成。然而,用线粒体活性氧清除剂MitoQ治疗可改善血管生成功能障碍。这些结果突出了GTPBP3作为肢体缺血后发育性血管生成和新生血管形成的关键因素。