Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, Manhattan, KS, 66506-5302, USA.
Augusta University, Augusta, GA, USA.
Learn Behav. 2021 Sep;49(3):307-320. doi: 10.3758/s13420-020-00457-y. Epub 2021 Feb 22.
Young, Clark, Goffus, and Hoane (Learning and Motivation, 40(2), 160-177, 2009) documented significant advantages of linear and nonlinear mixed-effects modeling in the analysis of Morris water maze data. However, they also noted a caution regarding the impact of the common practice of ending a trial when the rat had not reached the platform by a preestablished deadline. The present study revisits their conclusions by considering a new approach that involves multilevel (i.e., mixed effects) censored generalized linear regression using Bayesian analysis. A censored regression explicitly models the censoring created by prematurely ending a trial, and the use of generalized linear regression incorporates the skewed distribution of latency data as well as the nonlinear relationships this can produce. This approach is contrasted with a standard multilevel linear and nonlinear regression using two case studies. The censored generalized linear regression better models the observed relationships, but the linear regression created mixed results and clearly resulted in model misspecification.
杨、克拉克、高夫斯和霍恩(《学习与动机》,40(2),160-177,2009 年)记录了线性和非线性混合效应模型在分析 Morris 水迷宫数据方面的显著优势。然而,他们也注意到,当老鼠在预先设定的截止时间之前没有到达平台时,结束试验的常见做法会产生影响。本研究通过考虑一种新方法重新探讨了他们的结论,该方法涉及使用贝叶斯分析的多层次(即混合效应)删失广义线性回归。删失回归明确地对由于过早结束试验而产生的删失进行建模,而广义线性回归的使用则包含了潜伏期数据的偏态分布以及这可能产生的非线性关系。该方法通过两个案例研究与标准的多层次线性和非线性回归进行了对比。删失广义线性回归更好地模拟了观察到的关系,但线性回归的结果却不一致,并且显然导致了模型的错误指定。