Suppr超能文献

重新探讨 Morris 水迷宫数据的混合效应建模:贝叶斯删失回归。

Mixed effects modeling of Morris water maze data revisited: Bayesian censored regression.

机构信息

Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, Manhattan, KS, 66506-5302, USA.

Augusta University, Augusta, GA, USA.

出版信息

Learn Behav. 2021 Sep;49(3):307-320. doi: 10.3758/s13420-020-00457-y. Epub 2021 Feb 22.

Abstract

Young, Clark, Goffus, and Hoane (Learning and Motivation, 40(2), 160-177, 2009) documented significant advantages of linear and nonlinear mixed-effects modeling in the analysis of Morris water maze data. However, they also noted a caution regarding the impact of the common practice of ending a trial when the rat had not reached the platform by a preestablished deadline. The present study revisits their conclusions by considering a new approach that involves multilevel (i.e., mixed effects) censored generalized linear regression using Bayesian analysis. A censored regression explicitly models the censoring created by prematurely ending a trial, and the use of generalized linear regression incorporates the skewed distribution of latency data as well as the nonlinear relationships this can produce. This approach is contrasted with a standard multilevel linear and nonlinear regression using two case studies. The censored generalized linear regression better models the observed relationships, but the linear regression created mixed results and clearly resulted in model misspecification.

摘要

杨、克拉克、高夫斯和霍恩(《学习与动机》,40(2),160-177,2009 年)记录了线性和非线性混合效应模型在分析 Morris 水迷宫数据方面的显著优势。然而,他们也注意到,当老鼠在预先设定的截止时间之前没有到达平台时,结束试验的常见做法会产生影响。本研究通过考虑一种新方法重新探讨了他们的结论,该方法涉及使用贝叶斯分析的多层次(即混合效应)删失广义线性回归。删失回归明确地对由于过早结束试验而产生的删失进行建模,而广义线性回归的使用则包含了潜伏期数据的偏态分布以及这可能产生的非线性关系。该方法通过两个案例研究与标准的多层次线性和非线性回归进行了对比。删失广义线性回归更好地模拟了观察到的关系,但线性回归的结果却不一致,并且显然导致了模型的错误指定。

相似文献

1
Mixed effects modeling of Morris water maze data revisited: Bayesian censored regression.
Learn Behav. 2021 Sep;49(3):307-320. doi: 10.3758/s13420-020-00457-y. Epub 2021 Feb 22.
2
A new statistical method to analyze Morris Water Maze data using Dirichlet distribution.
F1000Res. 2019 Sep 6;8:1601. doi: 10.12688/f1000research.20072.2. eCollection 2019.
4
Comparison of different protocols of Morris water maze in cognitive impairment with heart failure.
Brain Behav. 2020 Feb;10(2):e01519. doi: 10.1002/brb3.1519. Epub 2020 Jan 16.
5
On Suitability of Mixture of Generalized Exponential Models in Modeling Right-Censored Medical Datasets Using Conditional Expectations.
Comput Math Methods Med. 2022 Oct 14;2022:7363646. doi: 10.1155/2022/7363646. eCollection 2022.
6
Modeling spatial learning in rats based on Morris water maze experiments.
Pharm Stat. 2010 Jan-Mar;9(1):10-20. doi: 10.1002/pst.361.
7
Quantile regression for censored mixed-effects models with applications to HIV studies.
Stat Interface. 2015;8(2):203-215. doi: 10.4310/SII.2015.v8.n2.a8.
8
Fractal dimensions: A new paradigm to assess spatial memory and learning using Morris water maze.
Behav Brain Res. 2016 Feb 15;299:141-6. doi: 10.1016/j.bbr.2015.11.023. Epub 2015 Nov 22.
10
Using the Morris water maze to assess spatial learning and memory in weanling mice.
PLoS One. 2015 Apr 17;10(4):e0124521. doi: 10.1371/journal.pone.0124521. eCollection 2015.

引用本文的文献

1
Understanding Individual Subject Differences through Large Behavioral Datasets: Analytical and Statistical Considerations.
Perspect Behav Sci. 2023 Sep 11;47(1):225-250. doi: 10.1007/s40614-023-00388-9. eCollection 2024 Mar.
2
Statistical power and false positive rates for interdependent outcomes are strongly influenced by test type: Implications for behavioral neuroscience.
Neuropsychopharmacology. 2023 Oct;48(11):1612-1622. doi: 10.1038/s41386-023-01592-6. Epub 2023 May 4.

本文引用的文献

1
Accelerated Failure Time Survival Model to Analyze Morris Water Maze Latency Data.
J Neurotrauma. 2021 Feb 15;38(4):435-445. doi: 10.1089/neu.2020.7089. Epub 2020 Oct 19.
2
Bayesian data analysis as a tool for behavior analysts.
J Exp Anal Behav. 2019 Mar;111(2):225-238. doi: 10.1002/jeab.512. Epub 2019 Feb 19.
3
An overview of Bayesian reasoning in the analysis of delay-discounting data.
J Exp Anal Behav. 2019 Mar;111(2):239-251. doi: 10.1002/jeab.504. Epub 2019 Feb 19.
4
Discounting: A practical guide to multilevel analysis of indifference data.
J Exp Anal Behav. 2017 Jul;108(1):97-112. doi: 10.1002/jeab.265.
5
Bayesian data analysis for newcomers.
Psychon Bull Rev. 2018 Feb;25(1):155-177. doi: 10.3758/s13423-017-1272-1.
6
The problem with categorical thinking by psychologists.
Behav Processes. 2016 Feb;123:43-53. doi: 10.1016/j.beproc.2015.09.009. Epub 2015 Sep 28.
7
A solution to dependency: using multilevel analysis to accommodate nested data.
Nat Neurosci. 2014 Apr;17(4):491-6. doi: 10.1038/nn.3648. Epub 2014 Mar 26.
8
Statistical analysis of latency outcomes in behavioral experiments.
Behav Brain Res. 2011 Aug 1;221(1):271-5. doi: 10.1016/j.bbr.2011.03.007. Epub 2011 Mar 17.
9
Modeling spatial learning in rats based on Morris water maze experiments.
Pharm Stat. 2010 Jan-Mar;9(1):10-20. doi: 10.1002/pst.361.
10
Effects of truncation on reaction time analysis.
J Exp Psychol Gen. 1994 Mar;123(1):34-80. doi: 10.1037//0096-3445.123.1.34.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验