Suppr超能文献

贝叶斯数据分析作为行为分析师的工具。

Bayesian data analysis as a tool for behavior analysts.

机构信息

Kansas State University.

出版信息

J Exp Anal Behav. 2019 Mar;111(2):225-238. doi: 10.1002/jeab.512. Epub 2019 Feb 19.

Abstract

Bayesian approaches to data analysis are considered within the context of behavior analysis. The paper distinguishes between Bayesian inference, the use of Bayes Factors, and Bayesian data analysis using specialized tools. Given the importance of prior beliefs to these approaches, the review addresses those situations in which priors have a big effect on the outcome (Bayes Factors) versus a smaller effect (parameter estimation). Although there are many advantages to Bayesian data analysis from a philosophical perspective, in many cases a behavior analyst can be reasonably well-served by the adoption of traditional statistical tools as long as the focus is on parameter estimation and model comparison, not null hypothesis significance testing. A strong case for Bayesian analysis exists under specific conditions: When prior beliefs can help narrow parameter estimates (an especially important issue given the small sample sizes common in behavior analysis) and when an analysis cannot easily be conducted using traditional approaches (e.g., repeated measures censored regression).

摘要

贝叶斯分析方法在行为分析的背景下进行考虑。本文区分了贝叶斯推理、贝叶斯因子的使用以及使用专门工具的贝叶斯数据分析。鉴于先验信念对这些方法的重要性,本综述讨论了先验信念对结果有重大影响(贝叶斯因子)和较小影响(参数估计)的情况。尽管从哲学角度来看,贝叶斯数据分析有很多优势,但在许多情况下,只要重点是参数估计和模型比较,而不是零假设显著性检验,行为分析师采用传统的统计工具就可以得到很好的服务。在特定条件下,贝叶斯分析具有很强的说服力:当先验信念可以帮助缩小参数估计范围时(鉴于行为分析中常见的小样本量,这是一个特别重要的问题),并且当分析无法使用传统方法(例如,重复测量截尾回归)轻松进行时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验