Suppr超能文献

解决依赖问题的方法:使用多层次分析来适应嵌套数据。

A solution to dependency: using multilevel analysis to accommodate nested data.

机构信息

Section Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands.

1] Section Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, The Netherlands. [2] Section Functional Genomics, Department Clinical Genetics, VU Medical Center, Amsterdam, The Netherlands.

出版信息

Nat Neurosci. 2014 Apr;17(4):491-6. doi: 10.1038/nn.3648. Epub 2014 Mar 26.

Abstract

In neuroscience, experimental designs in which multiple observations are collected from a single research object (for example, multiple neurons from one animal) are common: 53% of 314 reviewed papers from five renowned journals included this type of data. These so-called 'nested designs' yield data that cannot be considered to be independent, and so violate the independency assumption of conventional statistical methods such as the t test. Ignoring this dependency results in a probability of incorrectly concluding that an effect is statistically significant that is far higher (up to 80%) than the nominal α level (usually set at 5%). We discuss the factors affecting the type I error rate and the statistical power in nested data, methods that accommodate dependency between observations and ways to determine the optimal study design when data are nested. Notably, optimization of experimental designs nearly always concerns collection of more truly independent observations, rather than more observations from one research object.

摘要

在神经科学中,从单个研究对象(例如,一只动物的多个神经元)中收集多个观察结果的实验设计很常见:在五个著名期刊的 314 篇综述论文中,有 53%包含这种类型的数据。这些所谓的“嵌套设计”产生的数据不能被认为是独立的,因此违反了传统统计方法(如 t 检验)的独立性假设。忽略这种相关性会导致错误地得出结论,认为效应在统计上是显著的,其概率远远高于(高达 80%)名义α水平(通常设定为 5%)。我们讨论了影响嵌套数据中Ⅰ型错误率和统计功效的因素、处理观测值之间相关性的方法,以及当数据嵌套时确定最佳研究设计的方法。值得注意的是,实验设计的优化几乎总是涉及收集更多真正独立的观测值,而不是从一个研究对象中收集更多的观测值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验