Suppr超能文献

生物标志物在肿瘤学中的应用是否会增加临床试验失败的风险?一项大规模分析。

Does biomarker use in oncology improve clinical trial failure risk? A large-scale analysis.

机构信息

Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.

St Michael's Hospital, Toronto, ON, Canada.

出版信息

Cancer Med. 2021 Mar;10(6):1955-1963. doi: 10.1002/cam4.3732. Epub 2021 Feb 23.

Abstract

PURPOSE

To date there has not been an extensive analysis of the outcomes of biomarker use in oncology.

METHODS

Data were pooled across four indications in oncology drawing upon trial outcomes from www.clinicaltrials.gov: breast cancer, non-small cell lung cancer (NSCLC), melanoma and colorectal cancer from 1998 to 2017. We compared the likelihood drugs would progress through the stages of clinical trial testing to approval based on biomarker status. This was done with multi-state Markov models, tools that describe the stochastic process in which subjects move among a finite number of states.

RESULTS

Over 10000 trials were screened, which yielded 745 drugs. The inclusion of biomarker status as a covariate significantly improved the fit of the Markov model in describing the drug trajectories through clinical trial testing stages. Hazard ratios based on the Markov models revealed the likelihood of drug approval with biomarkers having nearly a fivefold increase for all indications combined. A 12, 8 and 7-fold hazard ratio was observed for breast cancer, melanoma and NSCLC, respectively. Markov models with exploratory biomarkers outperformed Markov models with no biomarkers.

CONCLUSION

This is the first systematic statistical evidence that biomarkers clearly increase clinical trial success rates in three different indications in oncology. Also, exploratory biomarkers, long before they are properly validated, appear to improve success rates in oncology. This supports early and aggressive adoption of biomarkers in oncology clinical trials.

摘要

目的

目前尚未对肿瘤学生物标志物的应用结果进行广泛分析。

方法

本研究通过对从 1998 年至 2017 年在 www.clinicaltrials.gov 上注册的四项肿瘤适应证(乳腺癌、非小细胞肺癌、黑色素瘤和结直肠癌)的临床试验结果进行汇总,分析了生物标志物在肿瘤学中的应用。我们比较了基于生物标志物状态,药物在临床试验测试阶段进展到批准的可能性。这是通过多状态马尔可夫模型完成的,该模型是一种描述主体在有限数量状态之间移动的随机过程的工具。

结果

筛选了超过 10000 项试验,得到了 745 种药物。将生物标志物状态作为协变量纳入后,显著提高了马尔可夫模型描述药物在临床试验测试阶段轨迹的拟合度。基于马尔可夫模型的风险比显示,在所有适应证中,具有生物标志物的药物获得批准的可能性增加了近 5 倍。在乳腺癌、黑色素瘤和非小细胞肺癌中,风险比分别为 12、8 和 7 倍。具有探索性生物标志物的马尔可夫模型优于没有生物标志物的马尔可夫模型。

结论

这是第一个系统的统计学证据,表明生物标志物明显提高了肿瘤学中三种不同适应证的临床试验成功率。此外,在经过适当验证之前,探索性生物标志物似乎可以提高肿瘤学的成功率。这支持在肿瘤学临床试验中尽早和积极地采用生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c742/7957156/c93fc5893017/CAM4-10-1955-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验