Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
Proteins. 2021 Jul;89(7):884-895. doi: 10.1002/prot.26066. Epub 2021 Mar 27.
Multi-domain proteins are not only formed through natural evolution but can also be generated by recombinant DNA technology. Because many fusion proteins can enhance the selectivity of cell targeting, these artificially produced molecules, called multi-specific biologics, are promising drug candidates, especially for immunotherapy. Moreover, the rational design of domain linkers in fusion proteins is becoming an essential step toward a quantitative understanding of the dynamics in these biopharmaceutics. We developed a computational framework to characterize the impacts of peptide linkers on the dynamics of multi-specific biologics. Specifically, we first constructed a benchmark containing six types of linkers that represent various lengths and degrees of flexibility and used them to connect two natural proteins as a test system. We then projected the microsecond dynamics of these proteins generated from Anton onto a coarse-grained conformational space. We further analyzed the similarity of dynamics among different proteins in this low-dimensional space by a neural-network-based classification model. Finally, we applied hierarchical clustering to place linkers into different subgroups based on the classification results. The clustering results suggest that the length of linkers, which is used to spatially separate different functional modules, plays the most important role in regulating the dynamics of this fusion protein. Given the same number of amino acids, linker flexibility functions as a regulator of protein dynamics. In summary, we illustrated that a new computational strategy can be used to study the dynamics of multi-domain fusion proteins by a combination of long timescale molecular dynamics simulation, coarse-grained feature extraction, and artificial intelligence.
多结构域蛋白不仅可以通过自然进化形成,也可以通过重组 DNA 技术产生。由于许多融合蛋白可以提高细胞靶向的选择性,这些人工产生的分子,称为多特异性生物制剂,是很有前途的药物候选物,特别是在免疫疗法方面。此外,融合蛋白中结构域连接肽的合理设计正在成为定量理解这些生物制剂动力学的必要步骤。我们开发了一种计算框架来描述肽连接对多特异性生物制剂动力学的影响。具体来说,我们首先构建了一个基准,其中包含六种代表不同长度和柔韧性的连接,并用它们作为测试系统将两个天然蛋白质连接起来。然后,我们将这些蛋白质的微秒动力学从 Anton 投射到粗粒构象空间。我们进一步通过基于神经网络的分类模型分析了在这个低维空间中不同蛋白质之间动力学的相似性。最后,我们根据分类结果将连接分为不同的亚组进行层次聚类。聚类结果表明,连接的长度,用于空间分离不同的功能模块,在调节融合蛋白动力学方面起着最重要的作用。在相同数量的氨基酸的情况下,连接的柔韧性作为蛋白质动力学的调节剂。总之,我们通过长时程分子动力学模拟、粗粒特征提取和人工智能的组合,说明了一种新的计算策略可以用于研究多结构域融合蛋白的动力学。