Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA.
College of Engineering, University of Georgia, Athens, GA 30602, USA.
Structure. 2018 Oct 2;26(10):1414-1424.e3. doi: 10.1016/j.str.2018.07.010. Epub 2018 Aug 30.
The information of how two proteins interact is embedded in the atomic details of their binding interfaces. These interactions, spatial-temporally coordinating each other as a network in a variable cytoplasmic environment, dominate almost all biological functions. A feasible and reliable computational model is highly demanded to realistically simulate these cellular processes and unravel the complexities beneath them. We therefore present a multiscale framework that integrates simulations on two different scales. The higher-resolution model incorporates structural information of proteins and energetics of their binding, while the lower-resolution model uses a highly simplified representation of proteins to capture the long-time-scale dynamics of a system with multiple proteins. Through a systematic benchmark test and two practical applications of biomolecular systems with specific cellular functions, we demonstrated that this method could be a powerful approach to understand molecular mechanisms of dynamic interactions between biomolecules and their functional impacts with high computational efficiency.
两种蛋白质相互作用的信息嵌入在它们结合界面的原子细节中。这些相互作用在可变的细胞质环境中作为网络彼此时空协调,主导着几乎所有的生物功能。因此,人们迫切需要一种可行且可靠的计算模型来真实地模拟这些细胞过程,并揭示其中的复杂性。为此,我们提出了一个多尺度框架,该框架整合了两种不同尺度的模拟。高分辨率模型包含蛋白质的结构信息及其结合的能量学,而低分辨率模型则使用蛋白质的高度简化表示来捕捉具有多个蛋白质的系统的长时间尺度动力学。通过系统的基准测试和两个具有特定细胞功能的生物分子系统的实际应用,我们证明了该方法可以成为一种强大的方法,以高计算效率理解生物分子之间动态相互作用的分子机制及其功能影响。