Sarosiek Christina, DeJongh Ethan A, Coutrakon George, DeJongh Don F, Duffin Kirk L, Karonis Nicholas T, Ordoñez Caesar E, Pankuch Mark, Rykalin Victor, Winans John R, Welsh James S
Department of Physics, Northern Illinois University, DeKalb, IL, 60115, USA.
ProtonVDA LLC, Naperville, IL, 60563, USA.
Med Phys. 2021 May;48(5):2271-2278. doi: 10.1002/mp.14801. Epub 2021 Mar 22.
Verification of patient-specific proton stopping powers obtained in the patient's treatment position can be used to reduce the distal and proximal margins needed in particle beam planning. Proton radiography can be used as a pretreatment instrument to verify integrated stopping power consistency with the treatment planning CT. Although a proton radiograph is a pixel by pixel representation of integrated stopping powers, the image may also be of high enough quality and contrast to be used for patient alignment. This investigation quantifies the accuracy and image quality of a prototype proton radiography system on a clinical proton delivery system.
We have developed a clinical prototype proton radiography system designed for integration into efficient clinical workflows. We tested the images obtained by this system for water-equivalent thickness (WET) accuracy, image noise, and spatial resolution. We evaluated the WET accuracy by comparing the average WET and rms error in several regions of interest (ROI) on a proton radiograph of a custom peg phantom. We measured the spatial resolution on a CATPHAN Line Pair phantom and a custom edge phantom by measuring the 10% value of the modulation transfer function (MTF). In addition, we tested the ability to detect proton range errors due to anatomical changes in a patient with a customized CIRS pediatric head phantom and inserts of varying WET placed in the posterior fossae of the brain. We took proton radiographs of the phantom with each insert in place and created difference maps between the resulting images. Integrated proton range was measured from an ROI in the difference maps.
We measured the WET accuracy of the proton radiographic images to be ±0.2 mm (0.33%) from known values. The spatial resolution of the images was 0.6 lp/mm on the line pair phantom and 1.13 lp/mm on the edge phantom. We were able to detect anatomical changes producing changes in WET as low as 0.6 mm.
The proton radiography system produces images with image quality sufficient for pretreatment range consistency verification.
在患者治疗位置获得的特定患者质子阻止本领的验证可用于减少粒子束治疗计划所需的远端和近端边界。质子射线照相可作为一种预处理工具,用于验证与治疗计划CT的积分阻止本领一致性。尽管质子射线照片是积分阻止本领的逐像素表示,但该图像的质量和对比度也可能足够高,可用于患者定位。本研究量化了临床质子输送系统上原型质子射线照相系统的准确性和图像质量。
我们开发了一种临床原型质子射线照相系统,设计用于集成到高效的临床工作流程中。我们测试了该系统获得的图像的水等效厚度(WET)准确性、图像噪声和空间分辨率。我们通过比较定制栓体模体质子射线照片上几个感兴趣区域(ROI)的平均WET和均方根误差来评估WET准确性。我们通过测量调制传递函数(MTF)的10%值,在CATPHAN线对模体和定制边缘模体上测量空间分辨率。此外,我们使用定制的CIRS儿科头部模体以及放置在脑后窝的不同WET插入物,测试了检测因患者解剖结构变化导致的质子射程误差的能力。我们在每个插入物就位的情况下拍摄模体的质子射线照片,并在所得图像之间创建差异图。从差异图中的ROI测量积分质子射程。
我们测量的质子射线照相图像的WET准确性与已知值的偏差为±0.2毫米(0.33%)。图像在线对模体上的空间分辨率为0.6线对/毫米,在边缘模体上为1.13线对/毫米。我们能够检测到低至0.6毫米的WET变化所产生的解剖结构变化。
质子射线照相系统产生的图像质量足以用于治疗前射程一致性验证。