Suppr超能文献

转录因子与什么相互作用?

What do Transcription Factors Interact With?

机构信息

Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.

Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.

出版信息

J Mol Biol. 2021 Jul 9;433(14):166883. doi: 10.1016/j.jmb.2021.166883. Epub 2021 Feb 20.

Abstract

Although we have made significant progress, we still possess a limited understanding of how genomic and epigenomic information directs gene expression programs through sequence-specific transcription factors (TFs). Extensive research has settled on three general classes of TF targets in metazoans: promoter accessibility via chromatin regulation (e.g., SAGA), assembly of the general transcription factors on promoter DNA (e.g., TFIID), and recruitment of RNA polymerase (Pol) II (e.g., Mediator) to establish a transcription pre-initiation complex (PIC). Here we discuss TFs and their targets. We also place this in the context of our current work with Saccharomyces (yeast), where we find that promoters typically lack an architecture that supports TF function. Moreover, yeast promoters that support TF binding also display interactions with cofactors like SAGA and Mediator, but not TFIID. It is unknown to what extent all genes in metazoans require TFs and their cofactors.

摘要

尽管我们已经取得了重大进展,但对于基因组和表观基因组信息如何通过序列特异性转录因子 (TF) 指导基因表达程序,我们的理解仍然有限。大量研究确定了后生动物中三类一般的 TF 靶标:通过染色质调节获得启动子可及性(例如 SAGA),在启动子 DNA 上组装一般转录因子(例如 TFIID),以及招募 RNA 聚合酶 (Pol) II(例如 Mediator)以建立转录起始前复合物 (PIC)。在这里,我们讨论 TF 和它们的靶标。我们还将其置于我们目前在酿酒酵母 (yeast) 中的工作背景下,我们发现启动子通常缺乏支持 TF 功能的结构。此外,支持 TF 结合的酵母启动子也与 SAGA 和 Mediator 等辅助因子相互作用,但不与 TFIID 相互作用。目前还不清楚后生动物中的所有基因在多大程度上都需要 TF 和它们的辅助因子。

相似文献

1
What do Transcription Factors Interact With?
J Mol Biol. 2021 Jul 9;433(14):166883. doi: 10.1016/j.jmb.2021.166883. Epub 2021 Feb 20.
2
A high-resolution protein architecture of the budding yeast genome.
Nature. 2021 Apr;592(7853):309-314. doi: 10.1038/s41586-021-03314-8. Epub 2021 Mar 10.
3
The general transcription machinery and general cofactors.
Crit Rev Biochem Mol Biol. 2006 May-Jun;41(3):105-78. doi: 10.1080/10409230600648736.
4
Regulation of the RNA polymerase II pre-initiation complex by its associated coactivators.
Nat Rev Genet. 2023 Nov;24(11):767-782. doi: 10.1038/s41576-023-00630-9. Epub 2023 Aug 2.
6
The Mediator complex and transcription regulation.
Crit Rev Biochem Mol Biol. 2013 Nov-Dec;48(6):575-608. doi: 10.3109/10409238.2013.840259. Epub 2013 Oct 3.
8
Enhancer-Mediated Formation of Nuclear Transcription Initiation Domains.
Int J Mol Sci. 2022 Aug 18;23(16):9290. doi: 10.3390/ijms23169290.
9
Mediator and SAGA have distinct roles in Pol II preinitiation complex assembly and function.
Cell Rep. 2012 Nov 29;2(5):1061-7. doi: 10.1016/j.celrep.2012.10.019. Epub 2012 Nov 21.
10
Defining a chromatin architecture that supports transcription at RNA polymerase II promoters.
J Biol Chem. 2024 Aug;300(8):107515. doi: 10.1016/j.jbc.2024.107515. Epub 2024 Jun 28.

引用本文的文献

3
Drosophila architectural proteins M1BP and Opbp cooperatively form the active promoter of a ribosomal protein gene.
Epigenetics Chromatin. 2025 Apr 16;18(1):20. doi: 10.1186/s13072-025-00584-8.
6
TNF-α-Induced NF-κB Alter the Methylation Status of Some Stemness Genes in HT-29 Human Colon Cancer Cell.
Adv Biomed Res. 2024 Nov 30;13:114. doi: 10.4103/abr.abr_75_24. eCollection 2024.
8
Opening and changing: mammalian SWI/SNF complexes in organ development and carcinogenesis.
Open Biol. 2024 Oct;14(10):240039. doi: 10.1098/rsob.240039. Epub 2024 Oct 30.
9
Rapid profiling of transcription factor-cofactor interaction networks reveals principles of epigenetic regulation.
Nucleic Acids Res. 2024 Sep 23;52(17):10276-10296. doi: 10.1093/nar/gkae706.
10
How Transcription Factor Clusters Shape the Transcriptional Landscape.
Biomolecules. 2024 Jul 20;14(7):875. doi: 10.3390/biom14070875.

本文引用的文献

1
A high-resolution protein architecture of the budding yeast genome.
Nature. 2021 Apr;592(7853):309-314. doi: 10.1038/s41586-021-03314-8. Epub 2021 Mar 10.
3
Molecular determinants of MED1 interaction with the DNA bound VDR-RXR heterodimer.
Nucleic Acids Res. 2020 Nov 4;48(19):11199-11213. doi: 10.1093/nar/gkaa775.
4
Transcription imparts architecture, function and logic to enhancer units.
Nat Genet. 2020 Oct;52(10):1067-1075. doi: 10.1038/s41588-020-0686-2. Epub 2020 Sep 21.
5
Identification of the human DPR core promoter element using machine learning.
Nature. 2020 Sep;585(7825):459-463. doi: 10.1038/s41586-020-2689-7. Epub 2020 Sep 9.
6
Enhancer and super-enhancer dynamics in repair after ischemic acute kidney injury.
Nat Commun. 2020 Jul 7;11(1):3383. doi: 10.1038/s41467-020-17205-5.
8
The structural basis for cohesin-CTCF-anchored loops.
Nature. 2020 Feb;578(7795):472-476. doi: 10.1038/s41586-019-1910-z. Epub 2020 Jan 6.
9
TADs and Their Borders: Free Movement or Building a Wall?
J Mol Biol. 2020 Feb 7;432(3):643-652. doi: 10.1016/j.jmb.2019.11.025. Epub 2019 Dec 27.
10
Multiple direct interactions of TBP with the MYC oncoprotein.
Nat Struct Mol Biol. 2019 Nov;26(11):1035-1043. doi: 10.1038/s41594-019-0321-z. Epub 2019 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验