Xu Junlin, Lu Changcheng, Jin Shuting, Meng Yajie, Fu Xiangzheng, Zeng Xiangxiang, Nussinov Ruth, Cheng Feixiong
School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China.
College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China.
Nucleic Acids Res. 2025 Feb 27;53(5). doi: 10.1093/nar/gkaf138.
Gene regulatory networks (GRNs) provide a global representation of how genetic/genomic information is transferred in living systems and are a key component in understanding genome regulation. Single-cell multiome data provide unprecedented opportunities to reconstruct GRNs at fine-grained resolution. However, the inference of GRNs is hindered by insufficient single omic profiles due to the characteristic high loss rate of single-cell sequencing data. In this study, we developed scMultiomeGRN, a deep learning framework to infer transcription factor (TF) regulatory networks via unique integration of single-cell genomic (single-cell RNA sequencing) and epigenomic (single-cell ATAC sequencing) data. We create scMultiomeGRN to elucidate these networks by conceptualizing TF network graph structures. Specifically, we build modality-specific neighbor aggregators and cross-modal attention modules to learn latent representations of TFs from single-cell multi-omics. We demonstrate that scMultiomeGRN outperforms state-of-the-art models on multiple benchmark datasets involved in diseases and health. Via scMultiomeGRN, we identified Alzheimer's disease-relevant regulatory network of SPI1 and RUNX1 for microglia. In summary, scMultiomeGRN offers a deep learning framework to identify cell type-specific gene regulatory network from single-cell multiome data.
基因调控网络(GRNs)提供了遗传/基因组信息在生命系统中如何传递的全局表示,是理解基因组调控的关键组成部分。单细胞多组学数据为以细粒度分辨率重建GRNs提供了前所未有的机会。然而,由于单细胞测序数据具有高丢失率的特点,GRNs的推断受到单细胞组学图谱不足的阻碍。在本研究中,我们开发了scMultiomeGRN,这是一个深度学习框架,通过独特整合单细胞基因组(单细胞RNA测序)和表观基因组(单细胞ATAC测序)数据来推断转录因子(TF)调控网络。我们创建scMultiomeGRN以通过概念化TF网络图形结构来阐明这些网络。具体而言,我们构建了模态特异性邻居聚合器和跨模态注意力模块,以从单细胞多组学中学习TF的潜在表示。我们证明,scMultiomeGRN在多个涉及疾病和健康的基准数据集上优于现有模型。通过scMultiomeGRN,我们确定了小胶质细胞中与阿尔茨海默病相关的SPI1和RUNX1调控网络。总之,scMultiomeGRN提供了一个深度学习框架,用于从单细胞多组学数据中识别细胞类型特异性基因调控网络。