Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.
Centre National de la Recherche Scientifique UMR7104, Illkirch, France.
Nucleic Acids Res. 2020 Nov 4;48(19):11199-11213. doi: 10.1093/nar/gkaa775.
The MED1 subunit of the Mediator complex is an essential coactivator of nuclear receptor-mediated transcriptional activation. While structural requirements for ligand-dependent binding of classical coactivator motifs of MED1 to numerous nuclear receptor ligand-binding domains have been fully elucidated, the recognition of the full-length or truncated coactivator by full nuclear receptor complexes remain unknown. Here we present structural details of the interaction between a large part of MED1 comprising its structured N-terminal and the flexible receptor-interacting domains and the mutual heterodimer of the vitamin D receptor (VDR) and the retinoid X receptor (RXR) bound to their cognate DNA response element. Using a combination of structural and biophysical methods we show that the ligand-dependent interaction between VDR and the second coactivator motif of MED1 is crucial for complex formation and we identify additional, previously unseen, interaction details. In particular, we identified RXR regions involved in the interaction with the structured N-terminal domain of MED1, as well as VDR regions outside the classical coactivator binding cleft affected by coactivator recruitment. These findings highlight important roles of each receptor within the heterodimer in selective recognition of MED1 and contribute to our understanding of the nuclear receptor-coregulator complexes.
介导复合物的 MED1 亚基是核受体介导的转录激活的必需共激活因子。虽然已经充分阐明了经典共激活因子基序的配体依赖性结合到许多核受体配体结合域的结构要求,但完整核受体复合物对全长或截短的共激活因子的识别仍然未知。在这里,我们介绍了由其结构 N 端和灵活的受体相互作用域组成的 MED1 大部分以及与它们的同源 DNA 反应元件结合的维生素 D 受体 (VDR) 和视黄酸 X 受体 (RXR) 的相互异二聚体之间相互作用的结构细节。我们使用结构和生物物理方法的组合表明,VDR 与 MED1 的第二个共激活因子基序之间的配体依赖性相互作用对于复合物形成至关重要,并且我们确定了其他以前未见的相互作用细节。特别是,我们确定了 RXR 区域参与与 MED1 的结构化 N 端结构域的相互作用,以及 VDR 区域在受共激活因子募集影响的经典共激活因子结合裂隙之外。这些发现突出了每个受体在异二聚体中对 MED1 的选择性识别中的重要作用,并有助于我们理解核受体-共激活因子复合物。