Suppr超能文献

生态瞬时评估作为抑郁症试验中的一种测量工具。

Ecological momentary assessment as a measurement tool in depression trials.

作者信息

Targum Steven D, Sauder Colin, Evans Miriam, Saber John N, Harvey Philip D

机构信息

Signant Health, Boston, MA, USA.

Adams Clinical LLC, Watertown, MA, USA.

出版信息

J Psychiatr Res. 2021 Apr;136:256-264. doi: 10.1016/j.jpsychires.2021.02.012. Epub 2021 Feb 14.

Abstract

We used ecological momentary assessment (EMA) to track symptoms during a clinical trial. Thirty-six participants with major depressive disorder (MDD) and MADRS scores ≥20 were enrolled in a nonrandomized 6-week open-label trial of commercially available antidepressants. Twice daily, a mobile device prompted participants to self-report the 6 items of the HamD sub-scale derived from the Hamilton rating scale for depression (HamD). Morning EMA reports asked "how do you feel now" whereas evening reports gathered a full-day impression. Clinicians who were blinded to the EMA data rated the MADRS, HamD and HamD at screen, baseline and weeks 2,4, and 6. Hierarchical linear modeling (HLM) examined the course of the EMA assessments and convergence between EMA scores and clinician ratings. HLM analyses revealed strong correlations between AM and PM EMA derived HamD scores and revealed significant improvements over time. EMA improvements were significantly correlated with the clinician rated HamD scores at endpoint and predicted clinician rated HamD score changes from baseline to endpoint (p < .001). There was a large correlation between EMA and clinician derived HamD scores at each in-person assessment after baseline. Treatment response defined by EMA matched the clinician rated HamD treatment responses in 33 of 36 cases (91.7%). EMA derived symptom scores appear to be efficient and valid measures to track daily symptomatic change in clinical trials and may provide more accurate measures of symptom severity than the episodic "snapshots" that are currently used as clinical outcomes. These findings support further investigation of EMA for assessment in clinical trials.

摘要

我们在一项临床试验中采用生态瞬时评估(EMA)来追踪症状。36名中度抑郁障碍(MDD)且蒙哥马利-艾森伯格抑郁量表(MADRS)得分≥20的参与者,被纳入一项为期6周的非随机开放标签试验,该试验使用的是市面上可买到的抗抑郁药。移动设备每天两次提示参与者自我报告源自汉密尔顿抑郁评定量表(HamD)的HamD子量表中的6个项目。早晨的EMA报告询问“你现在感觉如何”,而晚上的报告收集一整天的感受。对EMA数据不知情的临床医生在筛查、基线以及第2、4和6周时对MADRS、HamD和HamD进行评分。分层线性模型(HLM)检查了EMA评估的过程以及EMA得分与临床医生评分之间的一致性。HLM分析显示,上午和下午EMA得出的HamD得分之间存在强相关性,且随着时间推移有显著改善。EMA的改善与终点时临床医生评定的HamD得分显著相关,并预测了临床医生评定的HamD得分从基线到终点的变化(p <.001)。基线后每次面对面评估时,EMA与临床医生得出的HamD得分之间都存在很大的相关性。在36例病例中的33例(91.7%)中,由EMA定义的治疗反应与临床医生评定的HamD治疗反应相匹配。EMA得出的症状评分似乎是在临床试验中追踪每日症状变化的有效且可靠的指标,并且可能比目前用作临床结果的偶发性“快照”更准确地衡量症状严重程度。这些发现支持进一步研究将EMA用于临床试验评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验