Suppr超能文献

基于门控 RNN 的可解释结构学习。

Learning With Interpretable Structure From Gated RNN.

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 Jul;31(7):2267-2279. doi: 10.1109/TNNLS.2020.2967051. Epub 2020 Feb 13.

Abstract

The interpretability of deep learning models has raised extended attention these years. It will be beneficial if we can learn an interpretable structure from deep learning models. In this article, we focus on recurrent neural networks (RNNs), especially gated RNNs whose inner mechanism is still not clearly understood. We find that finite-state automaton (FSA) that processes sequential data have a more interpretable inner mechanism according to the definition of interpretability and can be learned from RNNs as the interpretable structure. We propose two methods to learn FSA from RNN based on two different clustering methods. With the learned FSA and via experiments on artificial and real data sets, we find that FSA is more trustable than the RNN from which it learned, which gives FSA a chance to substitute RNNs in applications involving humans' lives or dangerous facilities. Besides, we analyze how the number of gates affects the performance of RNN. Our result suggests that gate in RNN is important but the less the better, which could be a guidance to design other RNNs. Finally, we observe that the FSA learned from RNN gives semantic aggregated states, and its transition graph shows us a very interesting vision of how RNNs intrinsically handle text classification tasks.

摘要

近年来,深度学习模型的可解释性引起了广泛关注。如果我们能够从深度学习模型中学习到可解释的结构,那将是非常有益的。在本文中,我们专注于循环神经网络(RNN),特别是门控 RNN,其内部机制仍不清楚。我们发现,根据可解释性的定义,处理序列数据的有限状态自动机(FSA)具有更具解释性的内部机制,并且可以从 RNN 中学习到这种可解释的结构。我们提出了两种基于两种不同聚类方法从 RNN 中学习 FSA 的方法。通过对人工和真实数据集的学习和实验,我们发现 FSA 比它所学习的 RNN 更可信,这为 FSA 在涉及人类生命或危险设施的应用中替代 RNN 提供了机会。此外,我们分析了门的数量如何影响 RNN 的性能。我们的结果表明,RNN 中的门是重要的,但数量越少越好,这可以为设计其他 RNN 提供指导。最后,我们观察到从 RNN 中学习到的 FSA 给出了语义聚合状态,并且它的转移图为我们展示了 RNN 如何内在地处理文本分类任务的一个非常有趣的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验