Suppr超能文献

从用于睡眠呼吸暂停综合征诊断的气管音估计心率。

Estimation of Heart Rate From Tracheal Sounds Recorded for the Sleep Apnea Syndrome Diagnosis.

出版信息

IEEE Trans Biomed Eng. 2021 Oct;68(10):3039-3047. doi: 10.1109/TBME.2021.3061734. Epub 2021 Sep 20.

Abstract

Obstructive sleep apnea is a common sleep disorder with a high prevalence and often accompanied by significant snoring activity. To diagnose this condition, polysomnography is the standard method, where a neck microphone could be added to record tracheal sounds. These can then be used to study the characteristics of breathing, snoring or apnea. In addition cardiac sounds, also present in the acquired data, could be exploited to extract heart rate. The paper presents new algorithms for estimating heart rate from tracheal sounds, especially in very loud snoring environment. The advantage is that it is possible to reduce the number of diagnostic devices, especially for compact home applications. Three algorithms are proposed, based on optimal filtering and cross-correlation. They are tested firstly on one patient presenting significant pathology of apnea syndrome, with a recording of 509 min. Secondly, an extension to a database of 16 patients is proposed (16 hours of recording). When compared to a reference ECG signal, the final results obtained from tracheal sounds reach an accuracy of 81% to 98% and an RMS error from 1.3 to 4.2 bpm, according to the level of snoring and to the considered algorithm.

摘要

阻塞性睡眠呼吸暂停是一种常见的睡眠障碍,其患病率很高,通常伴有明显的打鼾活动。为了诊断这种情况,多导睡眠图是标准方法,可以添加颈部麦克风来记录气管声音。然后可以使用这些声音来研究呼吸、打鼾或呼吸暂停的特征。此外,获取的数据中还存在心音,也可以用来提取心率。本文提出了一些从气管声音中估计心率的新算法,特别是在非常响亮的打鼾环境中。这样做的优点是可以减少诊断设备的数量,特别是对于紧凑的家庭应用。提出了三种基于最佳滤波和互相关的算法。首先,对一名患有严重睡眠呼吸暂停综合征的患者进行了测试,记录时间为 509 分钟。其次,提出了一个扩展到 16 名患者的数据库(16 小时的记录)。与参考心电图信号相比,从气管声音获得的最终结果的准确性为 81%至 98%,RMS 误差为 1.3 至 4.2 bpm,具体取决于打鼾水平和所考虑的算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验