Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy Craiova, Romania.
Faculty of Automation, Computers and Electronics, University of Craiova, Craiova, Romania.
Med Ultrason. 2021 May 20;23(2):135-139. doi: 10.11152/mu-2746. Epub 2020 Dec 29.
In this paper we proposed different architectures of convolutional neural network (CNN) to classify fatty liver disease in images using only pixels and diagnosis labels as input. We trained and validated our models using a dataset of 629 images consisting of 2 types of liver images, normal and liver steatosis.
We assessed two pre-trained models of convolutional neural networks, Inception-v3 and VGG-16 using fine-tuning. Both models were pre-trained on ImageNet dataset to extract features from B-mode ultrasound liver images. The results obtained through these methods were compared for selecting the predictive model with the best performance metrics. We trained the two models using a dataset of 262 images of liver steatosis and 234 images of normal liver. We assessed the models using a dataset of 70 liver steatosis im-ages and 63 normal liver images.
The proposed model that used Inception v3 obtained a 93.23% test accuracy with a sensitivity of 89.9%% and a precision of 96.6%, and areas under each receiver operating characteristic curves (ROC AUC) of 0.93. The other proposed model that used VGG-16, obtained a 90.77% test accuracy with a sensitivity of 88.9% and a precision of 92.85%, and areas under each receiver operating characteristic curves (ROC AUC) of 0.91.
The deep learning algorithms that we proposed to detect steatosis and classify the images in normal and fatty liver images, yields an excellent test performance of over 90%. However, future larger studies are required in order to establish how these algorithms can be implemented in a clinical setting.
在本文中,我们提出了不同的卷积神经网络(CNN)架构,仅使用像素和诊断标签作为输入来对图像中的脂肪肝进行分类。我们使用包含 2 种肝图像(正常和肝脂肪变性)的 629 张图像数据集来训练和验证模型。
我们评估了两种经过微调的卷积神经网络预训练模型,Inception-v3 和 VGG-16。这两种模型都是在 ImageNet 数据集上进行预训练的,用于从 B 型超声肝图像中提取特征。通过这些方法获得的结果进行了比较,以选择具有最佳性能指标的预测模型。我们使用 262 张肝脂肪变性图像和 234 张正常肝图像的数据集来训练这两个模型。我们使用 70 张肝脂肪变性图像和 63 张正常肝图像的数据集来评估模型。
使用 Inception v3 的提出模型在测试中获得了 93.23%的准确率,敏感性为 89.9%,特异性为 96.6%,每个接收器操作特征曲线(ROC AUC)下的面积为 0.93。使用 VGG-16 的另一个提出模型在测试中获得了 90.77%的准确率,敏感性为 88.9%,特异性为 92.85%,每个接收器操作特征曲线(ROC AUC)下的面积为 0.91。
我们提出的用于检测脂肪变性和对正常和脂肪肝图像进行分类的深度学习算法,在测试中取得了超过 90%的优异性能。然而,需要进行更大规模的未来研究,以确定如何将这些算法应用于临床环境。