Suppr超能文献

用于监测活动模式以检测轻度认知障碍至阿尔茨海默病症状的非可穿戴传感器技术的现状

Current State of Non-wearable Sensor Technologies for Monitoring Activity Patterns to Detect Symptoms of Mild Cognitive Impairment to Alzheimer's Disease.

作者信息

Narasimhan Rajaram, G Muthukumaran, McGlade Charles

机构信息

Centre for Sensors and Process Control (CENSE), Hindustan Institute of Technology and Science, 1, Rajiv Gandhi Salai (OMR), Chennai 603 103, India.

Ridgeline Management Company (Senior Living), 1914 Willamette Falls Dr. #230, West Linn, OR 97068, USA.

出版信息

Int J Alzheimers Dis. 2021 Feb 10;2021:2679398. doi: 10.1155/2021/2679398. eCollection 2021.

Abstract

Mild cognitive impairment (MCI) could be a transitory stage to Alzheimer's disease (AD) and underlines the importance of early detection of this stage. In MCI stage, though the older adults are not completely dependent on others for day-to-day tasks, mild impairments are seen in memory, attention, etc., subtly affecting their daily activities/routines. Smart sensing technologies, such as wearable and non-wearable sensors, coupled with advanced predictive modeling techniques enable daily activities/routines based early detection of MCI symptoms. Non-wearable sensors are less intrusive and can monitor activities at naturalistic environment with no interference to an individual's daily routines. This review seeks to answer the following questions: (1) What is the evidence for use of non-wearable sensor technologies in early detection of MCI/AD utilizing daily activity data in an unobtrusive manner? (2) How are the machine learning methods being employed in analyzing activity data in this early detection approach? A systematic search was conducted in databases such as IEEE Explorer, PubMed, Science Direct, and Google Scholar for the papers published from inception till March 2019. All studies that fulfilled the following criteria were examined: a research goal of detecting/predicting MCI/AD, daily activities data to detect MCI/AD, noninvasive/non-wearable sensors for monitoring activity patterns, and machine learning techniques to create the prediction models. Out of 2165 papers retrieved, 12 papers were eligible for inclusion in this review. This review found a diverse selection of aspects such as sensors, activity domains/features, activity recognition methods, and abnormality detection methods. There is no conclusive evidence on superiority of one or more of these aspects over the others, especially on the activity feature that would be the best indicator of cognitive decline. Though all these studies demonstrate technological developments in this field, they all suggest it is far in the future it becomes an effective diagnostic tool in real-life clinical practice.

摘要

轻度认知障碍(MCI)可能是向阿尔茨海默病(AD)发展的一个过渡阶段,凸显了早期检测该阶段的重要性。在MCI阶段,尽管老年人在日常任务中并非完全依赖他人,但在记忆、注意力等方面会出现轻度损伤,从而对他们的日常活动/日常生活产生微妙影响。智能传感技术,如可穿戴和非可穿戴传感器,结合先进的预测建模技术,能够基于日常活动/日常生活对MCI症状进行早期检测。非可穿戴传感器的干扰性较小,可以在自然环境中监测活动,而不会干扰个人的日常生活。本综述旨在回答以下问题:(1)以不引人注意的方式利用日常活动数据,使用非可穿戴传感器技术早期检测MCI/AD的证据是什么?(2)在这种早期检测方法中,机器学习方法是如何用于分析活动数据的?我们在IEEE Xplore、PubMed、ScienceDirect和谷歌学术等数据库中进行了系统检索,以查找从创刊到2019年3月发表的论文。所有符合以下标准的研究都经过了审查:检测/预测MCI/AD的研究目标、用于检测MCI/AD的日常活动数据、用于监测活动模式的非侵入性/非可穿戴传感器,以及用于创建预测模型的机器学习技术。在检索到的2165篇论文中,有12篇符合纳入本综述的条件。本综述发现了传感器、活动领域/特征、活动识别方法和异常检测方法等多种不同方面。没有确凿证据表明这些方面中的一个或多个比其他方面更具优势,特别是关于哪个活动特征将是认知衰退的最佳指标。尽管所有这些研究都展示了该领域的技术发展,但它们都表明距离其在现实临床实践中成为一种有效的诊断工具还有很长的路要走。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da40/7889365/e8775356d871/IJAD2021-2679398.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验