Suppr超能文献

基于智能家居的阿尔茨海默病相关多领域症状预测。

Smart Home-Based Prediction of Multidomain Symptoms Related to Alzheimer's Disease.

出版信息

IEEE J Biomed Health Inform. 2018 Nov;22(6):1720-1731. doi: 10.1109/JBHI.2018.2798062. Epub 2018 Jan 25.

Abstract

As members of an increasingly aging society, one of our major priorities is to develop tools to detect the earliest stage of age-related disorders such as Alzheimer's Disease (AD). The goal of this paper is to evaluate the possibility of using unobtrusively collected activity-aware smart home behavior data to detect the multimodal symptoms that are often found to be impaired in AD. After gathering longitudinal smart home data for 29 older adults over an average duration of 2 years, we automatically labeled the data with corresponding activity classes and extracted time-series statistics containing ten behavioral features. Mobility, cognition, and mood were evaluated every six months. Using these data, we created regression models to predict symptoms as measured by the tests and a feature selection analysis was performed. Classification models were built to detect reliable absolute changes in the scores predicting symptoms and SmoteBOOST and wRACOG algorithms were used to overcome class imbalance where needed. Results show that all mobility, cognition, and depression symptoms can be predicted from activity-aware smart home data. Similarly, these data can be effectively used to predict reliable changes in mobility and memory skills. Results also suggest that not all behavioral features contribute equally to the prediction of every symptom. Future work therefore can improve model sensitivity by including additional longitudinal data and by further improving strategies to extract relevant features and address class imbalance. The results presented herein contribute toward the development of an early change detection system based on smart home technology.

摘要

作为一个老龄化社会的成员,我们的主要任务之一是开发工具来检测与年龄相关的疾病(如阿尔茨海默病)的早期阶段。本文的目的是评估使用非侵入性收集的活动感知智能家居行为数据来检测经常在 AD 中发现的多模态症状的可能性。在平均持续时间为 2 年的情况下,为 29 名老年人收集了纵向智能家居数据之后,我们使用相应的活动类自动标记了数据,并提取了包含十个行为特征的时间序列统计信息。每隔六个月评估一次移动性、认知和情绪。使用这些数据,我们创建了回归模型来预测测试中测量的症状,并且进行了特征选择分析。构建分类模型以检测预测症状的分数的可靠绝对变化,并使用 SmoteBOOST 和 wRACOG 算法来克服所需的类别不平衡。结果表明,所有的移动性、认知和抑郁症状都可以从活动感知智能家居数据中预测出来。同样,这些数据也可以有效地用于预测移动性和记忆技能可靠的变化。结果还表明,并非所有行为特征对每个症状的预测都有同等贡献。因此,未来的工作可以通过包含额外的纵向数据并进一步改进提取相关特征和解决类别不平衡的策略来提高模型的灵敏度。本文提出的结果有助于开发基于智能家居技术的早期变化检测系统。

相似文献

1
Smart Home-Based Prediction of Multidomain Symptoms Related to Alzheimer's Disease.基于智能家居的阿尔茨海默病相关多领域症状预测。
IEEE J Biomed Health Inform. 2018 Nov;22(6):1720-1731. doi: 10.1109/JBHI.2018.2798062. Epub 2018 Jan 25.
3
Automated Cognitive Health Assessment From Smart Home-Based Behavior Data.基于智能家居行为数据的自动化认知健康评估
IEEE J Biomed Health Inform. 2016 Jul;20(4):1188-94. doi: 10.1109/JBHI.2015.2445754. Epub 2015 Aug 17.
9
Assessing the quality of activities in a smart environment.评估智能环境中活动的质量。
Methods Inf Med. 2009;48(5):480-5. doi: 10.3414/ME0592. Epub 2009 May 15.

引用本文的文献

4
Cognition and Activity of Daily Living Function in people with Parkinson's disease.帕金森病患者的认知和日常生活活动功能。
J Neural Transm (Vienna). 2024 Oct;131(10):1159-1186. doi: 10.1007/s00702-024-02796-w. Epub 2024 Jul 8.
6

本文引用的文献

3
Treatment of Sleep Disorders in Dementia.痴呆症睡眠障碍的治疗
Curr Treat Options Neurol. 2016 Sep;18(9):40. doi: 10.1007/s11940-016-0424-3.
5
Sleep disturbances and mild cognitive impairment: A review.睡眠障碍与轻度认知障碍:综述
Sleep Sci. 2015 Jan-Mar;8(1):36-41. doi: 10.1016/j.slsci.2015.02.001. Epub 2015 Feb 23.
7
Automated Cognitive Health Assessment From Smart Home-Based Behavior Data.基于智能家居行为数据的自动化认知健康评估
IEEE J Biomed Health Inform. 2016 Jul;20(4):1188-94. doi: 10.1109/JBHI.2015.2445754. Epub 2015 Aug 17.
8
Trajectory of Mobility Decline by Type of Dementia.痴呆类型导致的活动能力下降轨迹
Alzheimer Dis Assoc Disord. 2016 Jan-Mar;30(1):60-6. doi: 10.1097/WAD.0000000000000091.
9
Activity Recognition on Streaming Sensor Data.流传感器数据的活动识别
Pervasive Mob Comput. 2014 Feb 1;10(Pt B):138-154. doi: 10.1016/j.pmcj.2012.07.003.
10
Sleep habits in mild cognitive impairment.轻度认知障碍的睡眠习惯。
Alzheimer Dis Assoc Disord. 2014 Apr-Jun;28(2):145-50. doi: 10.1097/WAD.0000000000000010.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验