Suppr超能文献

SAUR蛋白和PP2C.D磷酸酶调节H⁺-ATP酶和K⁺通道以控制气孔运动。

SAUR proteins and PP2C.D phosphatases regulate H+-ATPases and K+ channels to control stomatal movements.

作者信息

Wong Jeh Haur, Klejchová Martina, Snipes Stephen A, Nagpal Punita, Bak Gwangbae, Wang Bryan, Dunlap Sonja, Park Mee Yeon, Kunkel Emma N, Trinidad Brendan, Reed Jason W, Blatt Michael R, Gray William M

机构信息

Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota 55108, USA.

Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, UK.

出版信息

Plant Physiol. 2021 Feb 25;185(1):256-273. doi: 10.1093/plphys/kiaa023.

Abstract

Activation of plasma membrane (PM) H+-ATPase activity is crucial in guard cells to promote light-stimulated stomatal opening, and in growing organs to promote cell expansion. In growing organs, SMALL AUXIN UP RNA (SAUR) proteins inhibit the PP2C.D2, PP2C.D5, and PP2C.D6 (PP2C.D2/5/6) phosphatases, thereby preventing dephosphorylation of the penultimate phosphothreonine of PM H+-ATPases and trapping them in the activated state to promote cell expansion. To elucidate whether SAUR-PP2C.D regulatory modules also affect reversible cell expansion, we examined stomatal apertures and conductances of Arabidopsis thaliana plants with altered SAUR or PP2C.D activity. Here, we report that the pp2c.d2/5/6 triple knockout mutant plants and plant lines overexpressing SAUR fusion proteins exhibit enhanced stomatal apertures and conductances. Reciprocally, saur56 saur60 double mutants, lacking two SAUR genes normally expressed in guard cells, displayed reduced apertures and conductances, as did plants overexpressing PP2C.D5. Although altered PM H+-ATPase activity contributes to these stomatal phenotypes, voltage clamp analysis showed significant changes also in K+ channel gating in lines with altered SAUR and PP2C.D function. Together, our findings demonstrate that SAUR and PP2C.D proteins act antagonistically to facilitate stomatal movements through a concerted targeting of both ATP-dependent H+ pumping and channel-mediated K+ transport.

摘要

质膜(PM)H⁺-ATP酶活性的激活对于保卫细胞促进光刺激的气孔开放至关重要,对于生长中的器官促进细胞扩张也至关重要。在生长中的器官中,小生长素上调RNA(SAUR)蛋白抑制PP2C.D2、PP2C.D5和PP2C.D6(PP2C.D2/5/6)磷酸酶,从而防止质膜H⁺-ATP酶倒数第二个磷酸苏氨酸的去磷酸化,并将它们捕获在激活状态以促进细胞扩张。为了阐明SAUR-PP2C.D调节模块是否也影响可逆性细胞扩张,我们检测了SAUR或PP2C.D活性改变的拟南芥植株的气孔孔径和导度。在此,我们报告pp2c.d2/5/6三突变体植株和过表达SAUR融合蛋白的植株系表现出增强的气孔孔径和导度。相反,缺乏通常在保卫细胞中表达的两个SAUR基因的saur56 saur60双突变体,其孔径和导度降低,过表达PP2C.D5的植株也是如此。尽管质膜H⁺-ATP酶活性的改变导致了这些气孔表型,但电压钳分析表明,SAUR和PP2C.D功能改变的株系中钾离子通道门控也有显著变化。总之,我们的研究结果表明,SAUR和PP2C.D蛋白通过协同靶向ATP依赖的H⁺泵浦和通道介导的K⁺转运,以拮抗方式促进气孔运动。

相似文献

1
SAUR proteins and PP2C.D phosphatases regulate H+-ATPases and K+ channels to control stomatal movements.
Plant Physiol. 2021 Feb 25;185(1):256-273. doi: 10.1093/plphys/kiaa023.
2
A subset of plasma membrane-localized PP2C.D phosphatases negatively regulate SAUR-mediated cell expansion in Arabidopsis.
PLoS Genet. 2018 Jun 13;14(6):e1007455. doi: 10.1371/journal.pgen.1007455. eCollection 2018 Jun.
3
Mutation of a Conserved Motif of PP2C.D Phosphatases Confers SAUR Immunity and Constitutive Activity.
Plant Physiol. 2019 Sep;181(1):353-366. doi: 10.1104/pp.19.00496. Epub 2019 Jul 16.
4
Type 2C protein phosphatase clade D family members dephosphorylate guard cell plasma membrane H+-ATPase.
Plant Physiol. 2022 Mar 28;188(4):2228-2240. doi: 10.1093/plphys/kiab571.
5
SAUR63 stimulates cell growth at the plasma membrane.
PLoS Genet. 2022 Sep 19;18(9):e1010375. doi: 10.1371/journal.pgen.1010375. eCollection 2022 Sep.
6
Constitutive Expression of Arabidopsis SMALL AUXIN UP RNA19 (SAUR19) in Tomato Confers Auxin-Independent Hypocotyl Elongation.
Plant Physiol. 2017 Feb;173(2):1453-1462. doi: 10.1104/pp.16.01514. Epub 2016 Dec 20.
7
SAUR Inhibition of PP2C-D Phosphatases Activates Plasma Membrane H+-ATPases to Promote Cell Expansion in Arabidopsis.
Plant Cell. 2014 May;26(5):2129-2142. doi: 10.1105/tpc.114.126037. Epub 2014 May 23.
8
Red Light-Induced Phosphorylation of Plasma Membrane H-ATPase in Stomatal Guard Cells.
Plant Physiol. 2018 Oct;178(2):838-849. doi: 10.1104/pp.18.00544. Epub 2018 Aug 13.
9
Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):533-8. doi: 10.1073/pnas.1305438111. Epub 2013 Dec 23.
10
Brassinosteroid Involvement in Arabidopsis thaliana Stomatal Opening.
Plant Cell Physiol. 2017 Jun 1;58(6):1048-1058. doi: 10.1093/pcp/pcx049.

引用本文的文献

1
A PIF-SAUR module safeguards hypocotyl elongation from ABA inhibition in the dark.
Sci Adv. 2025 Jun 27;11(26):eadv0895. doi: 10.1126/sciadv.adv0895.
2
TOT3-AHA1 module: its role in fine-tuning stomatal responses.
Front Plant Sci. 2025 May 29;16:1582196. doi: 10.3389/fpls.2025.1582196. eCollection 2025.
4
Genome-wide identification, phylogenetic investigation and abiotic stress responses analysis of the gene family in litchi ( Sonn.).
Front Plant Sci. 2025 Apr 15;16:1547526. doi: 10.3389/fpls.2025.1547526. eCollection 2025.
5
Origin and evolution of auxin-mediated acid growth.
Proc Natl Acad Sci U S A. 2024 Dec 17;121(51):e2412493121. doi: 10.1073/pnas.2412493121. Epub 2024 Dec 10.
6
Low-dose Co-γ-ray irradiation promotes the growth of cucumber seedlings by inducing CsSAUR37 expression.
Plant Mol Biol. 2024 Sep 27;114(5):107. doi: 10.1007/s11103-024-01504-2.
8
Genome-wide identification and expression analysis of () genes in rice ().
Plant Signal Behav. 2024 Dec 31;19(1):2391658. doi: 10.1080/15592324.2024.2391658. Epub 2024 Aug 15.
10
A novel semi-dominant mutation in increases stomatal density.
Front Plant Sci. 2024 Apr 2;15:1377352. doi: 10.3389/fpls.2024.1377352. eCollection 2024.

本文引用的文献

1
Rapid Auxin-Mediated Cell Expansion.
Annu Rev Plant Biol. 2020 Apr 29;71:379-402. doi: 10.1146/annurev-arplant-073019-025907. Epub 2020 Mar 4.
2
Mutation of a Conserved Motif of PP2C.D Phosphatases Confers SAUR Immunity and Constitutive Activity.
Plant Physiol. 2019 Sep;181(1):353-366. doi: 10.1104/pp.19.00496. Epub 2019 Jul 16.
3
Red Light-Induced Phosphorylation of Plasma Membrane H-ATPase in Stomatal Guard Cells.
Plant Physiol. 2018 Oct;178(2):838-849. doi: 10.1104/pp.18.00544. Epub 2018 Aug 13.
4
Gating control and K uptake by the KAT1 K channel leaveraged through membrane anchoring of the trafficking protein SYP121.
Plant Cell Environ. 2018 Nov;41(11):2668-2677. doi: 10.1111/pce.13392. Epub 2018 Aug 1.
5
A subset of plasma membrane-localized PP2C.D phosphatases negatively regulate SAUR-mediated cell expansion in Arabidopsis.
PLoS Genet. 2018 Jun 13;14(6):e1007455. doi: 10.1371/journal.pgen.1007455. eCollection 2018 Jun.
6
Unexpected Connections between Humidity and Ion Transport Discovered Using a Model to Bridge Guard Cell-to-Leaf Scales.
Plant Cell. 2017 Nov;29(11):2921-2939. doi: 10.1105/tpc.17.00694. Epub 2017 Nov 1.
7
Blue Light Regulation of Stomatal Opening and the Plasma Membrane H-ATPase.
Plant Physiol. 2017 Jun;174(2):531-538. doi: 10.1104/pp.17.00166. Epub 2017 May 2.
8
The Membrane Transport System of the Guard Cell and Its Integration for Stomatal Dynamics.
Plant Physiol. 2017 Jun;174(2):487-519. doi: 10.1104/pp.16.01949. Epub 2017 Apr 13.
9
Constitutive Expression of Arabidopsis SMALL AUXIN UP RNA19 (SAUR19) in Tomato Confers Auxin-Independent Hypocotyl Elongation.
Plant Physiol. 2017 Feb;173(2):1453-1462. doi: 10.1104/pp.16.01514. Epub 2016 Dec 20.
10
Genome-Wide Assessment of Efficiency and Specificity in CRISPR/Cas9 Mediated Multiple Site Targeting in Arabidopsis.
PLoS One. 2016 Sep 13;11(9):e0162169. doi: 10.1371/journal.pone.0162169. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验