Department of Microbiology, University of Bayreuth, Bayreuth, Germany.
Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
BMC Microbiol. 2021 Feb 25;21(1):65. doi: 10.1186/s12866-021-02124-2.
Magnetosome formation in the alphaproteobacterium Magnetospirillum gryphiswaldense is controlled by more than 30 known mam and mms genes clustered within a large genomic region, the 'magnetosome island' (MAI), which also harbors numerous mobile genetic elements, repeats, and genetic junk. Because of the inherent genetic instability of the MAI caused by neighboring gene content, the elimination of these regions and their substitution by a compact, minimal magnetosome expression cassette would be important for future analysis and engineering. In addition, the role of the MAI boundaries and adjacent regions are still unclear, and recent studies indicated that further auxiliary determinants for magnetosome biosynthesis are encoded outside the MAI. However, techniques for large-scale genome editing of magnetic bacteria are still limited, and the full complement of genes controlling magnetosome formation has remained uncertain.
Here we demonstrate that an allelic replacement method based on homologous recombination can be applied for large-scale genome editing in M. gryphiswaldense. By analysis of 24 deletion mutants covering about 167 kb of non-redundant genome content, we identified genes and regions inside and outside the MAI irrelevant for magnetosome biosynthesis. A contiguous stretch of ~ 100 kb, including the scattered mam and mms6 operons, could be functionally substituted by a compact and contiguous ~ 38 kb cassette comprising all essential biosynthetic gene clusters, but devoid of interspersing irrelevant or problematic gene content.
Our results further delineate the genetic complement for magnetosome biosynthesis and will be useful for future large-scale genome editing and genetic engineering of magnetosome biosynthesis.
噬中性鞘氨醇单胞菌(Magnetospirillum gryphiswaldense)中的磁小体形成受 30 多个已知的 mam 和 mms 基因控制,这些基因簇集在一个大型基因组区域内,即“磁小体岛”(MAI),该区域还含有许多移动遗传元件、重复序列和遗传垃圾。由于 MAI 中邻近基因的内容导致其固有的遗传不稳定性,因此消除这些区域并用紧凑的最小磁小体表达盒取代它们对于未来的分析和工程至关重要。此外,MAI 的边界和相邻区域的作用仍不清楚,最近的研究表明,磁小体生物合成的进一步辅助决定因素是在 MAI 之外编码的。然而,用于磁性细菌大规模基因组编辑的技术仍然有限,控制磁小体形成的完整基因集仍然不确定。
本文展示了一种基于同源重组的等位基因替换方法可用于噬中性鞘氨醇单胞菌的大规模基因组编辑。通过分析覆盖约 167 kb 非冗余基因组内容的 24 个缺失突变体,我们确定了 MAI 内外与磁小体生物合成无关的基因和区域。大约 100 kb 的连续区域,包括分散的 mam 和 mms6 操纵子,可以通过一个紧凑且连续的约 38 kb 盒来替代,该盒包含所有必需的生物合成基因簇,但没有插入不相关或有问题的基因内容。
本文的结果进一步划定了磁小体生物合成的遗传组成,将有助于未来大规模的基因组编辑和磁小体生物合成的遗传工程。