Department of Microbiology, University of Bayreuth, Bayreuth, Germany.
Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
Environ Microbiol. 2020 Apr;22(4):1603-1618. doi: 10.1111/1462-2920.14950. Epub 2020 Mar 9.
The magnetotactic lifestyle represents one of the most complex traits found in many bacteria from aquatic environments and depends on magnetic organelles, the magnetosomes. Genetic transfer of magnetosome biosynthesis operons to a non-magnetotactic bacterium has only been reported once so far, but it is unclear whether this may also occur in other recipients. Besides magnetotactic species from freshwater, the genus Magnetospirillum of the Alphaproteobacteria also comprises a number of strains lacking magnetosomes, which are abundant in diverse microbial communities. Their close phylogenetic interrelationships raise the question whether the non-magnetotactic magnetospirilla may have the potential to (re)gain a magnetotactic lifestyle upon acquisition of magnetosome gene clusters. Here, we studied the transfer of magnetosome gene operons into several non-magnetotactic environmental magnetospirilla. Single-step transfer of a compact vector harbouring >30 major magnetosome genes from M. gryphiswaldense induced magnetosome biosynthesis in a Magnetospirillum strain from a constructed wetland. However, the resulting magnetic cellular alignment was insufficient for efficient magnetotaxis under conditions mimicking the weak geomagnetic field. Our work provides insights into possible evolutionary scenarios and potential limitations for the dissemination of magnetotaxis by horizontal gene transfer and expands the range of foreign recipients that can be genetically magnetized.
趋磁生活方式代表了许多水生环境细菌中最复杂的特征之一,它依赖于磁器官体,即磁小体。迄今为止,只有一次报道了将磁小体生物合成操纵子基因转移到非趋磁细菌中,但目前尚不清楚这种情况是否也可能发生在其他受体中。除了来自淡水的趋磁种外,α变形菌的磁螺菌属还包含许多缺乏磁小体的菌株,这些磁小体在各种微生物群落中都很丰富。它们密切的系统发育关系提出了一个问题,即非趋磁磁螺菌是否有可能在获得磁小体基因簇后(重新)获得趋磁生活方式。在这里,我们研究了将磁小体基因操纵子转移到几个非趋磁的环境磁螺菌中。从格氏嗜甲基菌中携带>30 个主要磁小体基因的紧凑型载体的一步转移诱导了来自人工湿地的磁螺菌的磁小体生物合成。然而,在模拟弱地磁场的条件下,产生的磁性细胞排列不足以进行有效的趋磁运动。我们的工作为水平基因转移传播趋磁作用的可能进化情景和潜在限制提供了深入了解,并扩展了可以遗传磁化的外源受体的范围。