Broad Institute of MIT and Harvard, Cambridge, Massachusetts.
Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.
Clin Cancer Res. 2021 May 15;27(10):2807-2815. doi: 10.1158/1078-0432.CCR-20-4382. Epub 2021 Feb 25.
Perineural invasion (PNI) is associated with aggressive tumor behavior, recurrence, and metastasis, and can influence the administration of adjuvant treatment. However, standard histopathologic examination has limited sensitivity in detecting PNI and does not provide insights into its mechanistic underpinnings.
A multivariate Cox regression was performed to validate associations between PNI and survival in 2,029 patients across 12 cancer types. Differential expression and gene set enrichment analysis were used to learn PNI-associated programs. Machine learning models were applied to build a PNI gene expression classifier. A blinded re-review of hematoxylin and eosin (H&E) slides by a board-certified pathologist helped determine whether the classifier could improve occult histopathologic detection of PNI.
PNI associated with both poor overall survival [HR, 1.73; 95% confidence interval (CI), 1.27-2.36; < 0.001] and disease-free survival (HR, 1.79; 95% CI, 1.38-2.32; < 0.001). Neural-like, prosurvival, and invasive programs were enriched in PNI-positive tumors ( < 0.001). Although PNI-associated features likely reflect in part the increased presence of nerves, many differentially expressed genes mapped specifically to malignant cells from single-cell atlases. A PNI gene expression classifier was derived using random forest and evaluated as a tool for occult histopathologic detection. On a blinded H&E re-review of sections initially described as PNI negative, more specimens were reannotated as PNI positive in the high classifier score cohort compared with the low-scoring cohort ( = 0.03, Fisher exact test).
This study provides salient biological insights regarding PNI and demonstrates a role for gene expression classifiers to augment detection of histopathologic features.
神经周围侵犯(PNI)与侵袭性肿瘤行为、复发和转移相关,并可能影响辅助治疗的实施。然而,标准的组织病理学检查在检测 PNI 方面灵敏度有限,并且无法深入了解其潜在机制。
对 12 种癌症类型的 2029 名患者进行多变量 Cox 回归分析,以验证 PNI 与生存之间的关联。差异表达和基因集富集分析用于学习与 PNI 相关的程序。应用机器学习模型构建 PNI 基因表达分类器。由经过董事会认证的病理学家对苏木精和伊红(H&E)切片进行盲法重新审查,以确定分类器是否可以提高隐匿性组织病理学检测 PNI 的能力。
PNI 与总生存不良相关[风险比(HR),1.73;95%置信区间(CI),1.27-2.36;<0.001]和无病生存(HR,1.79;95% CI,1.38-2.32;<0.001)。神经样、促生存和侵袭性程序在 PNI 阳性肿瘤中富集(<0.001)。尽管 PNI 相关特征可能部分反映了神经存在的增加,但许多差异表达的基因映射到来自单细胞图谱的恶性细胞。使用随机森林生成 PNI 基因表达分类器,并将其评估为隐匿性组织病理学检测的工具。在对最初描述为 PNI 阴性的切片进行 H&E 盲法重新审查时,与低评分组相比,在高评分组中,更多的标本被重新注释为 PNI 阳性(=0.03,Fisher 确切检验)。
本研究提供了关于 PNI 的重要生物学见解,并证明了基因表达分类器在增强组织病理学特征检测方面的作用。