Suppr超能文献

关于2×2矩阵的观点:基于二元列联的共享结构解决语义不同的问题。

Perspectives on the 2 × 2 Matrix: Solving Semantically Distinct Problems Based on a Shared Structure of Binary Contingencies.

作者信息

Neth Hansjörg, Gradwohl Nico, Streeb Dirk, Keim Daniel A, Gaissmaier Wolfgang

机构信息

Social Psychology and Decision Sciences, Department of Psychology, University of Konstanz, Konstanz, Germany.

Data Analysis and Visualization, Department of Computer Science, University of Konstanz, Konstanz, Germany.

出版信息

Front Psychol. 2021 Feb 9;11:567817. doi: 10.3389/fpsyg.2020.567817. eCollection 2020.

Abstract

Cognition is both empowered and limited by representations. The matrix lens model explicates tasks that are based on frequency counts, conditional probabilities, and binary contingencies in a general fashion. Based on a structural analysis of such tasks, the model links several problems and semantic domains and provides a new perspective on representational accounts of cognition that recognizes representational isomorphs as opportunities, rather than as problems. The shared structural construct of a 2 × 2 matrix supports a set of generic tasks and semantic mappings that provide a unifying framework for understanding problems and defining scientific measures. Our model's key explanatory mechanism is the adoption of particular perspectives on a 2 × 2 matrix that categorizes the frequency counts of cases by some condition, treatment, risk, or outcome factor. By the selective steps of filtering, framing, and focusing on specific aspects, the measures used in various semantic domains negotiate distinct trade-offs between abstraction and specialization. As a consequence, the transparent communication of such measures must explicate the perspectives encapsulated in their derivation. To demonstrate the explanatory scope of our model, we use it to clarify theoretical debates on biases and facilitation effects in Bayesian reasoning and to integrate the scientific measures from various semantic domains within a unifying framework. A better understanding of problem structures, representational transparency, and the role of perspectives in the scientific process yields both theoretical insights and practical applications.

摘要

认知既受到表征的赋能,也受到其限制。矩阵透镜模型以一种通用方式阐述了基于频率计数、条件概率和二元偶然性的任务。基于对此类任务的结构分析,该模型将若干问题和语义领域联系起来,并为认知的表征性解释提供了一个新视角,即把表征同构视为机遇而非问题。2×2矩阵的共享结构构建支持了一组通用任务和语义映射,为理解问题和定义科学度量提供了一个统一框架。我们模型的关键解释机制是对2×2矩阵采用特定视角,该矩阵根据某些条件、治疗、风险或结果因素对案例的频率计数进行分类。通过过滤、构建框架和关注特定方面的选择性步骤,不同语义领域中使用的度量在抽象性和专业性之间进行了不同的权衡。因此,此类度量的透明交流必须阐明其推导过程中所蕴含的视角。为了展示我们模型的解释范围,我们用它来澄清关于贝叶斯推理中的偏差和促进效应的理论辩论,并将来自不同语义领域的科学度量整合到一个统一框架内。对问题结构、表征透明度以及视角在科学过程中的作用有更深入的理解,既能产生理论洞见,也能带来实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9505/7901600/d7dd55d2f6e9/fpsyg-11-567817-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验