Suppr超能文献

计算生物学中机器学习的十条快速提示。

Ten quick tips for machine learning in computational biology.

作者信息

Chicco Davide

机构信息

Princess Margaret Cancer Centre, PMCR Tower 11-401, 101 College Street, Toronto, Ontario, M5G 1L7 Canada.

出版信息

BioData Min. 2017 Dec 8;10:35. doi: 10.1186/s13040-017-0155-3. eCollection 2017.

Abstract

Machine learning has become a pivotal tool for many projects in computational biology, bioinformatics, and health informatics. Nevertheless, beginners and biomedical researchers often do not have enough experience to run a data mining project effectively, and therefore can follow incorrect practices, that may lead to common mistakes or over-optimistic results. With this review, we present ten quick tips to take advantage of machine learning in any computational biology context, by avoiding some common errors that we observed hundreds of times in multiple bioinformatics projects. We believe our ten suggestions can strongly help any machine learning practitioner to carry on a successful project in computational biology and related sciences.

摘要

机器学习已成为计算生物学、生物信息学和健康信息学中许多项目的关键工具。然而,初学者和生物医学研究人员通常没有足够的经验来有效地开展数据挖掘项目,因此可能会遵循错误的做法,这可能导致常见错误或过于乐观的结果。通过本综述,我们提出十条快速提示,以在任何计算生物学背景下利用机器学习,避免我们在多个生物信息学项目中数百次观察到的一些常见错误。我们相信我们的十条建议能有力地帮助任何机器学习从业者在计算生物学及相关科学领域开展成功的项目。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e91a/5721660/f18a91f66fe9/13040_2017_155_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验