Suppr超能文献

膝关节软骨厚度随年龄而异:一项通过深度学习对2481名受试者进行的3T磁共振研究。

Knee Cartilage Thickness Differs Alongside Ages: A 3-T Magnetic Resonance Research Upon 2,481 Subjects via Deep Learning.

作者信息

Si Liping, Xuan Kai, Zhong Jingyu, Huo Jiayu, Xing Yue, Geng Jia, Hu Yangfan, Zhang Huan, Wang Qian, Yao Weiwu

机构信息

Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Front Med (Lausanne). 2021 Feb 9;7:600049. doi: 10.3389/fmed.2020.600049. eCollection 2020.

Abstract

It was difficult to distinguish the cartilage thinning of an entire knee joint and to track the evolution of cartilage morphology alongside ages in the general population, which was of great significance for studying osteoarthritis until big imaging data and artificial intelligence are fused. The purposes of our study are (1) to explore the cartilage thickness in anatomical regions of the knee joint among a large collection of healthy knees, and (2) to investigate the relationship between the thinning pattern of the cartilages and the increasing ages. In this retrospective study, 2,481 healthy knees (subjects ranging from 15 to 64 years old, mean age: 35 ± 10 years) were recruited. With magnetic resonance images of knees acquired on a 3-T superconducting scanner, we automatically and precisely segmented the cartilage via deep learning and calculated the cartilage thickness in 14 anatomical regions. The thickness readings were compared using ANOVA by considering the factors of age, sex, and side. We further tracked the relationship between the thinning pattern of the cartilage thickness and the increasing ages by regression analysis. The cartilage thickness was always thicker in the femur than corresponding regions in the tibia ( < 0.05). Regression analysis suggested cartilage thinning alongside ages in all regions ( < 0.05) except for medial and lateral anterior tibia in both females and males ( > 0.05). The thinning speed of men was faster than women in medial anterior and lateral anterior femur, yet slower in the medial patella ( < 0.05). We established the calculation method of cartilage thickness using big data and deep learning. We demonstrated that cartilage thickness differed across individual regions in the knee joint. Cartilage thinning alongside ages was identified, and the thinning pattern was consistent in the tibia while inconsistent in patellar and femoral between sexes. These findings provide a potential reference to detect cartilage anomaly.

摘要

在普通人群中,很难区分整个膝关节的软骨变薄情况,也难以追踪软骨形态随年龄的演变,而在大成像数据与人工智能融合之前,这对于研究骨关节炎具有重要意义。我们研究的目的是:(1)在大量健康膝关节中探索膝关节各解剖区域的软骨厚度;(2)研究软骨变薄模式与年龄增长之间的关系。在这项回顾性研究中,招募了2481个健康膝关节(受试者年龄在15至64岁之间,平均年龄:35±10岁)。利用在3-T超导扫描仪上获取的膝关节磁共振图像,我们通过深度学习自动且精确地分割软骨,并计算了14个解剖区域的软骨厚度。通过考虑年龄、性别和侧别因素,使用方差分析比较厚度读数。我们进一步通过回归分析追踪软骨厚度变薄模式与年龄增长之间的关系。股骨的软骨厚度总是比胫骨相应区域厚(<0.05)。回归分析表明,除女性和男性的胫骨内侧和外侧前部外,所有区域的软骨均随年龄变薄(<0.05)。男性在股骨内侧前部和外侧前部的变薄速度比女性快,但在髌骨内侧较慢(<0.05)。我们利用大数据和深度学习建立了软骨厚度的计算方法。我们证明了膝关节各区域的软骨厚度存在差异。已确定软骨随年龄变薄,且在胫骨中变薄模式一致,而在髌骨和股骨中,两性之间的变薄模式不一致。这些发现为检测软骨异常提供了潜在参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验