Suppr超能文献

膝关节软骨厚度的变化。一种新型机器学习算法在磁共振图像软骨分割中的应用。

Variation in the Thickness of Knee Cartilage. The Use of a Novel Machine Learning Algorithm for Cartilage Segmentation of Magnetic Resonance Images.

机构信息

Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, CA.

Department of Radiology, University of California-San Francisco, Musculoskeletal and Imaging Research Group, San Francisco, CA.

出版信息

J Arthroplasty. 2019 Oct;34(10):2210-2215. doi: 10.1016/j.arth.2019.07.022. Epub 2019 Jul 24.

Abstract

BACKGROUND

The variation in articular cartilage thickness (ACT) in healthy knees is difficult to quantify and therefore poorly documented. Our aims are to (1) define how machine learning (ML) algorithms can automate the segmentation and measurement of ACT on magnetic resonance imaging (MRI) (2) use ML to provide reference data on ACT in healthy knees, and (3) identify whether demographic variables impact these results.

METHODS

Patients recruited into the Osteoarthritis Initiative with a radiographic Kellgren-Lawrence grade of 0 or 1 with 3D double-echo steady-state MRIs were included and their gender, age, and body mass index were collected. Using a validated ML algorithm, 2 orthogonal points on each femoral condyle were identified (distal and posterior) and ACT was measured on each MRI. Site-specific ACT was compared using paired t-tests, and multivariate regression was used to investigate the risk-adjusted effect of each demographic variable on ACT.

RESULTS

A total of 3910 MRI were included. The average femoral ACT was 2.34 mm (standard deviation, 0.71; 95% confidence interval, 0.95-3.73). In multivariate analysis, distal-medial (-0.17 mm) and distal-lateral cartilage (-0.32 mm) were found to be thinner than posterior-lateral cartilage, while posterior-medial cartilage was found to be thicker (0.21 mm). In addition, female sex was found to negatively impact cartilage thickness (OR, -0.36; all values: P < .001).

CONCLUSION

ML was effectively used to automate the segmentation and measurement of cartilage thickness on a large number of MRIs of healthy knees to provide normative data on the variation in ACT in this population. We further report patient variables that can influence ACT. Further validation will determine whether this technique represents a powerful new tool for tracking the impact of medical intervention on the progression of articular cartilage degeneration.

摘要

背景

健康膝关节的关节软骨厚度(ACT)变化难以量化,因此记录不佳。我们的目标是:(1) 定义机器学习 (ML) 算法如何自动分割和测量磁共振成像 (MRI) 上的 ACT;(2) 使用 ML 提供健康膝关节 ACT 的参考数据;(3) 确定人口统计学变量是否会影响这些结果。

方法

本研究纳入了在 Osteoarthritis Initiative 中招募的影像学 Kellgren-Lawrence 分级为 0 或 1 级且具有 3D 双回波稳态 MRI 的患者,收集了他们的性别、年龄和体重指数。使用经过验证的 ML 算法,在每个股骨髁上识别出 2 个正交点(远端和后部),并在每个 MRI 上测量 ACT。使用配对 t 检验比较特定部位的 ACT,使用多变量回归分析调查每个人口统计学变量对 ACT 的风险调整效应。

结果

共纳入 3910 个 MRI。平均股骨 ACT 为 2.34 毫米(标准差为 0.71;95%置信区间为 0.95-3.73)。在多变量分析中,发现内侧远端 (-0.17 毫米) 和外侧远端 (-0.32 毫米) 软骨比外侧后软骨薄,而内侧后软骨较厚 (0.21 毫米)。此外,发现女性性别会对软骨厚度产生负面影响(OR,-0.36;所有值:P<.001)。

结论

ML 有效地用于自动分割和测量大量健康膝关节 MRI 上的软骨厚度,为该人群 ACT 变化提供了规范数据。我们进一步报告了可能影响 ACT 的患者变量。进一步的验证将确定该技术是否代表了一种强大的新工具,用于跟踪医疗干预对关节软骨退变进展的影响。

相似文献

2
Cartilage thickening in early radiographic knee osteoarthritis: a within-person, between-knee comparison.
Arthritis Care Res (Hoboken). 2012 Nov;64(11):1681-90. doi: 10.1002/acr.21719.
4
Cartilage survival of the knee strongly depends on malalignment: a survival analysis from the Osteoarthritis Initiative (OAI).
Knee Surg Sports Traumatol Arthrosc. 2020 May;28(5):1346-1355. doi: 10.1007/s00167-019-05434-1. Epub 2019 Mar 6.
5
Premorbid knee osteoarthritis is not characterised by diffuse thinness: the Framingham Osteoarthritis Study.
Ann Rheum Dis. 2008 Nov;67(11):1545-9. doi: 10.1136/ard.2007.076810. Epub 2008 Jan 24.
8
Can cartilage loss be detected in knee osteoarthritis (OA) patients with 3-6 months' observation using advanced image analysis of 3T MRI?
Osteoarthritis Cartilage. 2010 May;18(5):677-83. doi: 10.1016/j.joca.2010.02.010. Epub 2010 Feb 26.
9
Cartilage loss in radiographically normal knees depends on radiographic status of the contralateral knee - data from the Osteoarthritis Initiative.
Osteoarthritis Cartilage. 2019 Feb;27(2):273-277. doi: 10.1016/j.joca.2018.10.006. Epub 2018 Oct 28.
10
Kellgren-Lawrence grade of osteoarthritis is associated with change in certain morphological parameters.
Knee. 2020 Jun;27(3):633-641. doi: 10.1016/j.knee.2020.04.013. Epub 2020 Apr 30.

引用本文的文献

1
Machine learning models for clinical and structural knee osteoarthritis prediction: Recent advancements and future directions.
Osteoarthr Cartil Open. 2025 Jul 24;7(3):100654. doi: 10.1016/j.ocarto.2025.100654. eCollection 2025 Sep.
2
3
Appropriately planned resection depth can impact outcomes after robotic total knee arthroplasty.
J Orthop. 2025 Mar 10;69:42-46. doi: 10.1016/j.jor.2025.03.004. eCollection 2025 Nov.
4
Integration of Artificial Intelligence for Diagnostic Methods in Musculoskeletal Conditions: A Systematic Review.
Cureus. 2025 Feb 20;17(2):e79391. doi: 10.7759/cureus.79391. eCollection 2025 Feb.
8
An MRI-Derived Formula for Estimating the Native Joint Line Position in the Presence of Distal Femoral Bone Loss.
Cureus. 2024 Nov 14;16(11):e73707. doi: 10.7759/cureus.73707. eCollection 2024 Nov.
9
Machine Learning Models for Prediction of Progression of Knee Osteoarthritis: A Comprehensive Analysis.
J Pharm Bioallied Sci. 2024 Feb;16(Suppl 1):S764-S767. doi: 10.4103/jpbs.jpbs_1000_23. Epub 2024 Feb 29.
10
Automated measurement and grading of knee cartilage thickness: a deep learning-based approach.
Front Med (Lausanne). 2024 Feb 29;11:1337993. doi: 10.3389/fmed.2024.1337993. eCollection 2024.

本文引用的文献

2
Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks.
Sci Rep. 2018 Nov 7;8(1):16485. doi: 10.1038/s41598-018-34817-6.
3
Deep convolutional neural network for segmentation of knee joint anatomy.
Magn Reson Med. 2018 Dec;80(6):2759-2770. doi: 10.1002/mrm.27229. Epub 2018 May 17.
5
Automated detection and classification of the proximal humerus fracture by using deep learning algorithm.
Acta Orthop. 2018 Aug;89(4):468-473. doi: 10.1080/17453674.2018.1453714. Epub 2018 Mar 26.
6
Association of body mass index with knee cartilage damage in an asymptomatic population-based study.
BMC Musculoskelet Disord. 2017 Dec 8;18(1):517. doi: 10.1186/s12891-017-1884-7.
7
Knee cartilage segmentation and thickness computation from ultrasound images.
Med Biol Eng Comput. 2018 Apr;56(4):657-669. doi: 10.1007/s11517-017-1710-2. Epub 2017 Aug 29.
8
Predictive and concurrent validity of cartilage thickness change as a marker of knee osteoarthritis progression: data from the Osteoarthritis Initiative.
Osteoarthritis Cartilage. 2017 Dec;25(12):2063-2071. doi: 10.1016/j.joca.2017.08.005. Epub 2017 Aug 31.
10
Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks.
Radiology. 2017 Aug;284(2):574-582. doi: 10.1148/radiol.2017162326. Epub 2017 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验