Suppr超能文献

R-JaunLab:基于区域标注网络的带注释受试者照片黄疸的自动多类别识别。

R-JaunLab: Automatic Multi-Class Recognition of Jaundice on Photos of Subjects with Region Annotation Networks.

机构信息

School of Mathematics and Statistics, Central South University, Changsha, Hunan, 410083, China.

Science and Engineering School, Hunan First Normal University, Changsha, 410205, China.

出版信息

J Digit Imaging. 2021 Apr;34(2):337-350. doi: 10.1007/s10278-021-00432-7. Epub 2021 Feb 25.

Abstract

Jaundice occurs as a symptom of various diseases, such as hepatitis, the liver cancer, gallbladder or pancreas. Therefore, clinical measurement with special equipment is a common method that is used to identify the total serum bilirubin level in patients. Fully automated multi-class recognition of jaundice combines two key issues: (1) the critical difficulties in multi-class recognition of jaundice approaches contrasting with the binary class and (2) the subtle difficulties in multi-class recognition of jaundice represent extensive individuals variability of high-resolution photos of subjects, huge coherency between healthy controls and occult jaundice, as well as broadly inhomogeneous color distribution. We introduce a novel approach for multi-class recognition of jaundice to detect occult jaundice, obvious jaundice and healthy controls. First, region annotation network is developed and trained to propose eye candidates. Subsequently, an efficient jaundice recognizer is proposed to learn similarities, context, localization features and globalization characteristics on photos of subjects. Finally, both networks are unified by using shared convolutional layer. Evaluation of the structured model in a comparative study resulted in a significant performance boost (categorical accuracy for mean 91.38%) over the independent human observer. Our work was exceeded against the state-of-the-art convolutional neural network (96.85% and 90.06% for training and validation subset, respectively) and showed a remarkable categorical result for mean 95.33% on testing subset. The proposed network makes a performance better than physicians. This work demonstrates the strength of our proposal to help bringing an efficient tool for multi-class recognition of jaundice into clinical practice.

摘要

黄疸是各种疾病的症状,如肝炎、肝癌、胆囊或胰腺。因此,临床使用特殊设备进行测量是一种常见的方法,用于识别患者的总血清胆红素水平。黄疸的全自动多类识别结合了两个关键问题:(1)黄疸多类识别方法的关键困难与二进制类相反,(2)黄疸多类识别的细微困难代表了高分辨率主体照片的个体可变性大、健康对照与隐匿性黄疸之间的一致性大以及广泛的颜色分布不均匀。我们引入了一种新的黄疸多类识别方法,用于检测隐匿性黄疸、明显黄疸和健康对照。首先,开发并训练区域标注网络来提出眼睛候选者。随后,提出了一种有效的黄疸识别器,用于学习主体照片上的相似性、上下文、定位特征和全局特征。最后,通过使用共享卷积层将两个网络统一起来。在比较研究中对结构化模型的评估导致性能显著提高(平均分类准确率为 91.38%),优于独立的人类观察者。我们的工作超过了最先进的卷积神经网络(分别为 96.85%和 90.06%,用于训练和验证子集),并在测试子集上显示出平均 95.33%的显著分类结果。所提出的网络性能优于医生。这项工作证明了我们的建议的优势,有助于将一种有效的黄疸多类识别工具引入临床实践。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验