Shin Jung Ho, Park Jung Hwan, Seo Jeongmin, Im Tae Hong, Kim Jong Chan, Lee Han Eol, Kim Do Hyun, Woo Kie Young, Jeong Hu Young, Cho Yong-Hoon, Kim Taek-Soo, Kang Il-Suk, Lee Keon Jae
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea.
Adv Mater. 2021 Apr;33(13):e2007186. doi: 10.1002/adma.202007186. Epub 2021 Feb 26.
A robust Cu conductor on a glass substrate for thin-film μLEDs using the flash-induced chemical/physical interlocking between Cu and glass is reported. During millisecond light irradiation, CuO nanoparticles (NPs) on the display substrate are transformed into a conductive Cu film by reduction and sintering. At the same time, intensive heating at the boundary of CuO NPs and glass chemically induces the formation of an ultrathin Cu O interlayer within the Cu/glass interface for strong adhesion. Cu nanointerlocking occurs by transient glass softening and interface fluctuation to increase the contact area. Owing to these flash-induced interfacial interactions, the flash-activated Cu electrode exhibits an adhesion energy of 10 J m , which is five times higher than that of vacuum-deposited Cu. An AlGaInP thin-film vertical μLED (VLED) forms an electrical interconnection with the flash-induced Cu electrode via an ACF bonding process, resulting in a high optical power density of 41 mW mm . The Cu conductor enables reliable VLED operation regardless of harsh thermal stress and moisture infiltration under a high-temperature storage test, temperature humidity test, and thermal shock test. 50 × 50 VLED arrays transferred onto the flash-induced robust Cu electrode show high illumination yield and uniform distribution of forward voltage, peak wavelength, and device temperature.
报道了一种用于薄膜微发光二极管的玻璃基板上的坚固铜导体,其利用铜与玻璃之间的闪光诱导化学/物理互锁。在毫秒级光照期间,显示基板上的氧化铜纳米颗粒(NPs)通过还原和烧结转化为导电铜膜。同时,氧化铜纳米颗粒与玻璃边界处的强烈加热在铜/玻璃界面内化学诱导形成超薄氧化铜中间层,以实现强附着力。铜纳米互锁通过瞬态玻璃软化和界面波动发生,以增加接触面积。由于这些闪光诱导的界面相互作用,闪光激活的铜电极表现出10 J/m²的粘附能,这比真空沉积铜的粘附能高五倍。通过ACF键合工艺,AlGaInP薄膜垂直微发光二极管(VLED)与闪光诱导的铜电极形成电互连,从而产生41 mW/mm²的高光功率密度。在高温存储测试、温度湿度测试和热冲击测试下,无论热应力和湿气渗透多么恶劣,铜导体都能使VLED可靠运行。转移到闪光诱导的坚固铜电极上的50×50 VLED阵列显示出高照明产量以及正向电压、峰值波长和器件温度的均匀分布。