Suppr超能文献

采用丝素蛋白/聚己内酯纤维垫构建组织工程神经移植物,表面修饰生物活性氧化铈纳米粒子。

Tissue-engineered nerve graft using silk-fibroin/polycaprolactone fibrous mats decorated with bioactive cerium oxide nanoparticles.

机构信息

Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.

出版信息

J Biomed Mater Res A. 2021 Sep;109(9):1588-1599. doi: 10.1002/jbm.a.37153. Epub 2021 Feb 26.

Abstract

The main aim of this study was to evaluate the efficacy of cerium oxide nanoparticles (CNPs) encapsulated in fabricated hybrid silk-fibroin (SF)/polycaprolactone (PCL) nanofibers as an artificial neural guidance conduit (NGC) applicable for peripheral nerve regeneration. The NGC was prepared by PCL and SF filled with CNPs. The mechanical properties, contact angle, and cell biocompatibility experiments showed that the optimized concentration of CNPs inside SF and SF/PCL wall of conduits was 1% (wt/wt). The SEM image analysis showed the nanoscale texture of the scaffold in different topologies depend on composition with fiber diameters at about 351 ± 54 nm and 420 ± 73 nm respectively for CNPs + SF and CNPs + SF/PCL fibrous mats. Furthermore, contact angle measurement confirmed the hydrophilic behavior of the membranes, ascribable to the SF content and surface modification through modified methanol treatment. The balance of morphological and biochemical properties of hybrid CNPs 1% (wt/wt) + SF/PCL construct improves cell adhesion and proliferation in comparison with lower concentrations of CNPs in nanofibrous scaffolds. The release of CNPs 1% (wt/wt) from both CNPs + SF and CNPs+ SF/PCL fibrous mats was highly controlled and very slow during the extended time of incubation until 60 days. Fabricated double-layered NGC using CNPs + SF and CNPs + SF/PCL fibers was consistent for application in nervous tissue engineering and regenerative medicine from a structural and biocompatible perspective.

摘要

本研究的主要目的是评估封装在丝素蛋白(SF)/聚己内酯(PCL)纳米纤维中的氧化铈纳米颗粒(CNPs)作为人工神经引导导管(NGC)的功效,可应用于周围神经再生。NGC 通过填充有 CNPs 的 PCL 和 SF 制备。机械性能、接触角和细胞生物相容性实验表明,SF 内部和导管 SF/PCL 壁中 CNPs 的最佳浓度为 1%(wt/wt)。SEM 图像分析表明,不同拓扑结构的支架具有纳米级纹理,这取决于组成,CNPs+SF 和 CNPs+SF/PCL 纤维垫的纤维直径分别约为 351±54nm 和 420±73nm。此外,接触角测量证实了膜的亲水性,这归因于 SF 含量和通过改性甲醇处理进行的表面改性。与纳米纤维支架中较低浓度的 CNPs 相比,混合 CNPs 1%(wt/wt)+SF/PCL 构建体的形态和生化特性的平衡可改善细胞黏附和增殖。在长达 60 天的孵育时间内,CNPs 1%(wt/wt)从 CNPs+SF 和 CNPs+SF/PCL 纤维垫中的释放高度受控且非常缓慢。从结构和生物相容性的角度来看,使用 CNPs+SF 和 CNPs+SF/PCL 纤维制造的双层 NGC 适用于神经组织工程和再生医学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验