Gutiérrez-Gutiérrez Belén, Del Toro María Dolores, Borobia Alberto M, Carcas Antonio, Jarrín Inmaculada, Yllescas María, Ryan Pablo, Pachón Jerónimo, Carratalà Jordi, Berenguer Juan, Arribas Jose Ramón, Rodríguez-Baño Jesús
Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain; Departamento de Medicina, Universidad de Sevilla, Seville, Spain; Instituto de Biomedicina de Sevilla, Seville, Spain.
Departamento de Farmacología Clínica, Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación La Paz, Madrid, Spain.
Lancet Infect Dis. 2021 Jun;21(6):783-792. doi: 10.1016/S1473-3099(21)00019-0. Epub 2021 Feb 23.
The clinical presentation of COVID-19 in patients admitted to hospital is heterogeneous. We aimed to determine whether clinical phenotypes of patients with COVID-19 can be derived from clinical data, to assess the reproducibility of these phenotypes and correlation with prognosis, and to derive and validate a simplified probabilistic model for phenotype assignment. Phenotype identification was not primarily intended as a predictive tool for mortality.
In this study, we used data from two cohorts: the COVID-19@Spain cohort, a retrospective cohort including 4035 consecutive adult patients admitted to 127 hospitals in Spain with COVID-19 between Feb 2 and March 17, 2020, and the COVID-19@HULP cohort, including 2226 consecutive adult patients admitted to a teaching hospital in Madrid between Feb 25 and April 19, 2020. The COVID-19@Spain cohort was divided into a derivation cohort, comprising 2667 randomly selected patients, and an internal validation cohort, comprising the remaining 1368 patients. The COVID-19@HULP cohort was used as an external validation cohort. A probabilistic model for phenotype assignment was derived in the derivation cohort using multinomial logistic regression and validated in the internal validation cohort. The model was also applied to the external validation cohort. 30-day mortality and other prognostic variables were assessed in the derived phenotypes and in the phenotypes assigned by the probabilistic model.
Three distinct phenotypes were derived in the derivation cohort (n=2667)-phenotype A (516 [19%] patients), phenotype B (1955 [73%]) and phenotype C (196 [7%])-and reproduced in the internal validation cohort (n=1368)-phenotype A (233 [17%] patients), phenotype B (1019 [74%]), and phenotype C (116 [8%]). Patients with phenotype A were younger, were less frequently male, had mild viral symptoms, and had normal inflammatory parameters. Patients with phenotype B included more patients with obesity, lymphocytopenia, and moderately elevated inflammatory parameters. Patients with phenotype C included older patients with more comorbidities and even higher inflammatory parameters than phenotype B. We developed a simplified probabilistic model (validated in the internal validation cohort) for phenotype assignment, including 16 variables. In the derivation cohort, 30-day mortality rates were 2·5% (95% CI 1·4-4·3) for patients with phenotype A, 30·5% (28·5-32·6) for patients with phenotype B, and 60·7% (53·7-67·2) for patients with phenotype C (log-rank test p<0·0001). The predicted phenotypes in the internal validation cohort and external validation cohort showed similar mortality rates to the assigned phenotypes (internal validation cohort: 5·3% [95% CI 3·4-8·1] for phenotype A, 31·3% [28·5-34·2] for phenotype B, and 59·5% [48·8-69·3] for phenotype C; external validation cohort: 3·7% [2·0-6·4] for phenotype A, 23·7% [21·8-25·7] for phenotype B, and 51·4% [41·9-60·7] for phenotype C).
Patients admitted to hospital with COVID-19 can be classified into three phenotypes that correlate with mortality. We developed and validated a simplified tool for the probabilistic assignment of patients into phenotypes. These results might help to better classify patients for clinical management, but the pathophysiological mechanisms of the phenotypes must be investigated.
Instituto de Salud Carlos III, Spanish Ministry of Science and Innovation, and Fundación SEIMC/GeSIDA.
住院的COVID-19患者临床表现具有异质性。我们旨在确定COVID-19患者的临床表型是否可从临床数据中得出,评估这些表型的可重复性及其与预后的相关性,并推导和验证一种用于表型分类的简化概率模型。表型识别并非主要作为死亡率的预测工具。
在本研究中,我们使用了两个队列的数据:COVID-19@西班牙队列,这是一个回顾性队列,包括2020年2月2日至3月17日期间在西班牙127家医院连续收治的4035例成年COVID-19患者;以及COVID-19@HULP队列,包括2020年2月25日至4月19日期间在马德里一家教学医院连续收治的2226例成年患者。COVID-19@西班牙队列被分为一个推导队列,包含2667例随机选择的患者,以及一个内部验证队列,包含其余1368例患者。COVID-19@HULP队列用作外部验证队列。使用多项逻辑回归在推导队列中推导用于表型分类的概率模型,并在内部验证队列中进行验证。该模型也应用于外部验证队列。在推导的表型以及由概率模型分类的表型中评估30天死亡率和其他预后变量。
在推导队列(n = 2667)中得出了三种不同的表型——表型A(516例[19%]患者)、表型B(1955例[73%])和表型C(196例[7%])——并在内部验证队列(n = 1368)中得到重现——表型A(233例[17%]患者)、表型B(1019例[74%])和表型C(116例[8%])。表型A的患者更年轻,男性比例较低,有轻微病毒症状,炎症参数正常。表型B的患者中肥胖、淋巴细胞减少和炎症参数中度升高的患者更多。表型C的患者包括年龄较大、合并症更多且炎症参数比表型B更高的患者。我们开发了一种用于表型分类的简化概率模型(在内部验证队列中得到验证),包括16个变量。在推导队列中,表型A患者的30天死亡率为2.5%(95%CI 1.4 - 4.3),表型B患者为30.5%(28.5 - 32.6),表型C患者为60.7%(53.7 - 67.2)(对数秩检验p<0.0001)。内部验证队列和外部验证队列中预测的表型显示出与分类表型相似的死亡率(内部验证队列:表型A为5.3%[95%CI 3.4 - 8.1],表型B为31.3%[28.5 - 34.2],表型C为59.5%[48. – 69.3];外部验证队列:表型A为3.7%[2.0 - 6.4],表型B为23.7%[21.8 - 25.7],表型C为51.4%[41.9 - 60.7])。
住院的COVID-19患者可分为三种与死亡率相关的表型。我们开发并验证了一种用于将患者概率性分类为表型的简化工具。这些结果可能有助于更好地对患者进行临床管理分类,但表型的病理生理机制必须进行研究。
西班牙卡洛斯三世卫生研究所、西班牙科学与创新部以及SEIMC/GeSIDA基金会。