University of Oxford, Institute of Biomedical Engineering, Dept. Engineering Sciences, Oxford, UK.
University of Oxford, Institute of Biomedical Engineering, Dept. Engineering Sciences, Oxford, UK.
Clin Neurophysiol. 2021 Apr;132(4):904-913. doi: 10.1016/j.clinph.2021.01.009. Epub 2021 Feb 3.
Rapid-Eye-Movement (REM) sleep behaviour disorder (RBD) is an early predictor of Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. This study investigated the use of a minimal set of sensors to achieve effective screening for RBD in the population, integrating automated sleep staging (three state) followed by RBD detection without the need for cumbersome electroencephalogram (EEG) sensors.
Polysomnography signals from 50 participants with RBD and 50 age-matched healthy controls were used to evaluate this study. Three stage sleep classification was achieved using a random forest classifier and features derived from a combination of cost-effective and easy to use sensors, namely electrocardiogram (ECG), electrooculogram (EOG), and electromyogram (EMG) channels. Subsequently, RBD detection was achieved using established and new metrics derived from ECG and EMG channels.
The EOG and EMG combination provided the optimal minimalist fully-automated performance, achieving 0.57 ± 0.19 kappa (3 stage) for sleep staging and an RBD detection accuracy of 0.90 ± 0.11, (sensitivity and specificity of 0.88 ± 0.13 and 0.92 ± 0.098, respectively). A single ECG sensor achieved three state sleep staging with 0.28 ± 0.06 kappa and RBD detection accuracy of 0.62 ± 0.10.
This study demonstrates the feasibility of using signals from a single EOG and EMG sensor to detect RBD using fully-automated techniques.
This study proposes a cost-effective, practical, and simple RBD identification support tool using only two sensors (EMG and EOG); ideal for screening purposes.
快速眼动(REM)睡眠行为障碍(RBD)是帕金森病、路易体痴呆和多系统萎缩的早期预测指标。本研究旨在探讨使用最小的传感器集在人群中进行有效的 RBD 筛查,集成自动睡眠分期(三状态),然后无需繁琐的脑电图(EEG)传感器即可进行 RBD 检测。
使用 50 名 RBD 患者和 50 名年龄匹配的健康对照者的多导睡眠图信号来评估本研究。使用随机森林分类器和从具有成本效益且易于使用的传感器(即心电图(ECG)、眼电图(EOG)和肌电图(EMG)通道)组合中得出的特征来实现三状态睡眠分类。随后,使用从 ECG 和 EMG 通道得出的既定和新指标来实现 RBD 检测。
EOG 和 EMG 组合提供了最佳的最小化全自动性能,在睡眠分期方面达到 0.57±0.19 kappa(三状态),RBD 检测准确率为 0.90±0.11(灵敏度和特异性分别为 0.88±0.13 和 0.92±0.098)。单个 ECG 传感器可实现三状态睡眠分期,kappa 值为 0.28±0.06,RBD 检测准确率为 0.62±0.10。
本研究证明了使用单个 EOG 和 EMG 传感器信号使用全自动技术检测 RBD 的可行性。
本研究提出了一种具有成本效益、实用且简单的 RBD 识别支持工具,仅使用两个传感器(EMG 和 EOG);非常适合筛查目的。