Suppr超能文献

评估快速眼动睡眠行为障碍:从机器学习分类到连续分离指数的定义。

Assessing REM Sleep Behaviour Disorder: From Machine Learning Classification to the Definition of a Continuous Dissociation Index.

机构信息

Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy.

Sleep Disorders Center, Department of Neuroscience, University of Turin, 10126 Turin, Italy.

出版信息

Int J Environ Res Public Health. 2021 Dec 27;19(1):248. doi: 10.3390/ijerph19010248.

Abstract

Rapid Eye Movement Sleep Behaviour Disorder (RBD) is regarded as a prodrome of neurodegeneration, with a high conversion rate to α-synucleinopathies such as Parkinson's Disease (PD). The clinical diagnosis of RBD co-exists with evidence of REM Sleep Without Atonia (RSWA), a parasomnia that features loss of physiological muscular atonia during REM sleep. The objectives of this study are to implement an automatic detection of RSWA from polysomnographic traces, and to propose a continuous index (the Dissociation Index) to assess the level of dissociation between REM sleep stage and atonia. This is performed using Euclidean distance in proper vector spaces. Each subject is assigned a dissociation degree based on their distance from a reference, encompassing healthy subjects and clinically diagnosed RBD patients at the two extremes. Machine Learning models were employed to perform automatic identification of patients with RSWA through clinical polysomnographic scores, together with variables derived from electromyography. Proper distance metrics are proposed and tested to achieve a dissociation measure. The method proved efficient in classifying RSWA vs. not-RSWA subjects, achieving an overall accuracy, sensitivity and precision of 87%, 93% and 87.5%, respectively. On its part, the Dissociation Index proved to be promising in measuring the impairment level of patients. The proposed method moves a step forward in the direction of automatically identifying REM sleep disorders and evaluating the impairment degree. We believe that this index may be correlated with the patients' neurodegeneration process; this assumption will undergo a robust clinical validation process involving healthy, RSWA, RBD and PD subjects.

摘要

快速眼动睡眠行为障碍(RBD)被认为是神经退行性变的前驱症状,向α-突触核蛋白病(如帕金森病(PD))的转化率很高。RBD 的临床诊断与 REM 睡眠无动性(RSWA)并存,这是一种在 REM 睡眠期间丧失生理肌肉弛缓的睡眠障碍。本研究的目的是从多导睡眠图记录中自动检测 RSWA,并提出一个连续指标(分离指数)来评估 REM 睡眠阶段与弛缓之间的分离程度。这是通过在适当的向量空间中使用欧几里得距离来完成的。每个受试者都根据他们与参考的距离分配一个分离度,该参考包括健康受试者和临床诊断为 RBD 的患者的两个极端。 机器学习模型被用于通过临床多导睡眠评分以及源自肌电图的变量来自动识别具有 RSWA 的患者。提出并测试了适当的距离度量来实现分离度量。 该方法在对 RSWA 与非 RSWA 受试者进行分类方面证明是有效的,总体准确率、敏感度和精确度分别达到 87%、93%和 87.5%。就其本身而言,分离指数在衡量患者的损伤程度方面表现出很大的潜力。 该方法在自动识别 REM 睡眠障碍和评估损伤程度方面向前迈进了一步。我们认为,该指数可能与患者的神经退行性变过程有关;这一假设将通过涉及健康、RSWA、RBD 和 PD 患者的稳健临床验证过程来进行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38bc/8750960/522d1e31e73c/ijerph-19-00248-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验