Suppr超能文献

DUG 通路调控 Aspergillus nidulans 细胞内谷胱甘肽的降解。

The DUG Pathway Governs Degradation of Intracellular Glutathione in Aspergillus nidulans.

机构信息

Department of Molecular Biotechnology and Microbiology, Faculty of Sciences and Technology, University of Debrecen, Debrecen, Hungary.

University of Debrecen, Doctoral School of Nutrition and Food Sciences, Debrecen, Hungary.

出版信息

Appl Environ Microbiol. 2021 Apr 13;87(9). doi: 10.1128/AEM.01321-20.

Abstract

Glutathione (GSH) is an abundant tripeptide that plays a crucial role in shielding cellular macromolecules from various reactive oxygen and nitrogen species in fungi. Understanding GSH metabolism is of vital importance for deciphering redox regulation in these microorganisms. In the present study, to better understand the GSH metabolism in filamentous fungi, we investigated functions of the and genes in the model fungus These genes are orthologues of and , which are involved in cytosolic GSH degradation in The deletion of , , or both resulted in a moderate increase in the GSH content in mycelia grown on glucose, reduced conidium production, and disturbed sexual development. In agreement with these observations, transcriptome data showed that genes encoding mitogen-activated protein (MAP) kinase pathway elements (e.g., , , , and ) or regulatory proteins of conidiogenesis and sexual differentiation (e.g., , , , , , , and ) were downregulated in the Δ Δ mutant. Deletion of and/or slowed the depletion of GSH pools during carbon starvation. It also reduced accumulation of reactive oxygen species and decreased autolytic cell wall degradation and enzyme secretion but increased sterigmatocystin formation. Transcriptome data demonstrated that enzyme secretions-in contrast to mycotoxin production-were controlled at the posttranscriptional level. We suggest that GSH connects starvation and redox regulation to each other: cells utilize GSH as a stored carbon source during starvation. The reduction of GSH content alters the redox state, activating regulatory pathways responsible for carbon starvation stress responses. Glutathione (GSH) is a widely distributed tripeptide in both eukaryotes and prokaryotes. Owing to its very low redox potential, antioxidative character, and high intracellular concentration, GSH profoundly shapes the redox status of cells. Our observations suggest that GSH metabolism and/or the redox status of cells plays a determinative role in several important aspects of fungal life, including oxidative stress defense, protein secretion, and secondary metabolite production (including mycotoxin formation), as well as sexual and asexual differentiations. We demonstrated that even a slightly elevated GSH level can substantially disturb the homeostasis of fungi. This information could be important for development of new GSH-producing strains or for any biotechnologically relevant processes where the GSH content, antioxidant capacity, or oxidative stress tolerance of a fungal strain is manipulated.

摘要

谷胱甘肽(GSH)是一种丰富的三肽,在保护真菌细胞内大分子免受各种活性氧和氮物种的影响方面起着至关重要的作用。了解 GSH 代谢对于破译这些微生物中的氧化还原调节至关重要。在本研究中,为了更好地理解丝状真菌中的 GSH 代谢,我们研究了模型真菌中的 和 基因的功能。这些基因是 和 基因的同源物,参与了 细胞质 GSH 降解。ΔΔ、ΔΔ 或两者的缺失导致葡萄糖培养的菌丝体中 GSH 含量适度增加,分生孢子产生减少,有性发育受阻。与这些观察结果一致,转录组数据显示,编码丝裂原激活蛋白(MAP)激酶途径元件(例如 、 、 、 )或分生孢子发生和有性分化的调节蛋白(例如 、 、 、 、 、 、 )的基因表达下调在 ΔΔ 突变体中。和/或 的缺失减缓了碳饥饿期间 GSH 池的耗尽。它还减少了活性氧的积累,降低了自溶细胞壁降解和酶分泌,但增加了麦角固醇的形成。转录组数据表明,与产真菌毒素相比,酶分泌受到转录后水平的控制。我们认为 GSH 将饥饿和氧化还原调节相互连接:细胞在饥饿时将 GSH 用作储存的碳源。GSH 含量的降低改变了氧化还原状态,激活了负责碳饥饿应激反应的调节途径。谷胱甘肽(GSH)是真核生物和原核生物中广泛分布的三肽。由于其非常低的氧化还原电位、抗氧化特性和高细胞内浓度,GSH 深刻地影响了细胞的氧化还原状态。我们的观察结果表明,GSH 代谢和/或细胞的氧化还原状态在真菌生活的几个重要方面起着决定性作用,包括氧化应激防御、蛋白质分泌和次生代谢产物(包括真菌毒素形成)的产生,以及有性和无性分化。我们证明,即使 GSH 水平略有升高,也会严重扰乱真菌的内稳态。这一信息对于开发新的产 GSH 菌株或任何涉及真菌菌株 GSH 含量、抗氧化能力或氧化应激耐受性的生物技术相关过程都很重要。

相似文献

4
Study on the glutathione metabolism of the filamentous fungus Aspergillus nidulans.丝状真菌构巢曲霉谷胱甘肽代谢的研究
Acta Microbiol Immunol Hung. 2017 Sep 1;64(3):255-272. doi: 10.1556/030.64.2017.003. Epub 2017 Mar 6.
5
NsdD is a key repressor of asexual development in Aspergillus nidulans.NsdD是构巢曲霉无性发育的关键阻遏物。
Genetics. 2014 May;197(1):159-73. doi: 10.1534/genetics.114.161430. Epub 2014 Feb 14.
9
Functions of PUF Family RNA-Binding Proteins in .PUF 家族 RNA 结合蛋白在... 中的功能。
J Microbiol Biotechnol. 2021 May 28;31(5):676-685. doi: 10.4014/jmb.2101.01011.

本文引用的文献

4
The Role of Free Radicals in Autophagy Regulation: Implications for Ageing.自由基在自噬调控中的作用:对衰老的影响。
Oxid Med Cell Longev. 2018 Feb 26;2018:2450748. doi: 10.1155/2018/2450748. eCollection 2018.
5
Autolytic hydrolases affect sexual and asexual development of Aspergillus nidulans.自溶水解酶影响构巢曲霉的有性和无性发育。
Folia Microbiol (Praha). 2018 Sep;63(5):619-626. doi: 10.1007/s12223-018-0601-8. Epub 2018 Mar 30.
8
Microbial production of glutathione.谷胱甘肽的微生物生产。
World J Microbiol Biotechnol. 2017 Jun;33(6):106. doi: 10.1007/s11274-017-2277-7. Epub 2017 May 2.
10
Study on the glutathione metabolism of the filamentous fungus Aspergillus nidulans.丝状真菌构巢曲霉谷胱甘肽代谢的研究
Acta Microbiol Immunol Hung. 2017 Sep 1;64(3):255-272. doi: 10.1556/030.64.2017.003. Epub 2017 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验