Suppr超能文献

通过摩擦参数化实现化学特异性聚合物熔体的动态一致粗粒化模拟模型

Dynamically consistent coarse-grain simulation model of chemically specific polymer melts via friction parameterization.

作者信息

Johnson Lilian C, Phelan Frederick R

机构信息

Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.

出版信息

J Chem Phys. 2021 Feb 28;154(8):084114. doi: 10.1063/5.0034910.

Abstract

Coarse-grained (CG) models of polymers involve grouping many atoms in an all-atom (AA) representation into single sites to reduce computational effort yet retain the hierarchy of length and time scales inherent to macromolecules. Parameterization of such models is often via "bottom-up" methods, which preserve chemical specificity but suffer from artificially accelerated dynamics with respect to the AA model from which they were derived. Here, we study the combination of a bottom-up CG model with a dissipative potential as a means to obtain a chemically specific and dynamically correct model. We generate the conservative part of the force-field using the iterative Boltzmann inversion (IBI) method, which seeks to recover the AA structure. This is augmented with the dissipative Langevin thermostat, which introduces a single parameterizable friction factor to correct the unphysically fast dynamics of the IBI-generated force-field. We study this approach for linear polystyrene oligomer melts for three separate systems with 11, 21, and 41 monomers per chain and a mapping of one monomer per CG site. To parameterize the friction factor, target values are extracted from the AA dynamics using translational monomer diffusion, translational chain diffusion, and rotational chain motion to test the consistency of the parameterization across different modes of motion. We find that the value of the friction parameter needed to bring the CG dynamics in line with AA target values varies based on the mode of parameterization with short-time monomer translational dynamics requiring the highest values, long-time chain translational dynamics requiring the lowest values, and rotational dynamics falling in between. The friction ranges most widely for the shortest chains, and the span narrows with increasing chain length. For longer chains, a practical working value of the friction parameter may be derived from the rotational dynamics, owing to the contribution of multiple relaxation modes to chain rotation and a lack of sensitivity of the translational dynamics at these intermediate levels of friction. A study of equilibrium chain structure reveals that all chains studied are non-Gaussian. However, longer chains better approximate ideal chain dimensions than more rod-like shorter chains and thus are most closely described by a single friction parameter. We also find that the separability of the conservative and dissipative potentials is preserved.

摘要

聚合物的粗粒化(CG)模型涉及将全原子(AA)表示中的许多原子分组到单个位点,以减少计算量,同时保留大分子固有的长度和时间尺度层次结构。此类模型的参数化通常通过“自下而上”的方法进行,这种方法保留了化学特异性,但相对于从中推导出来的AA模型,存在人为加速动力学的问题。在这里,我们研究将自下而上的CG模型与耗散势相结合,作为获得化学特异性和动力学正确模型的一种手段。我们使用迭代玻尔兹曼反演(IBI)方法生成力场的保守部分,该方法旨在恢复AA结构。这通过耗散朗之万恒温器得到增强,该恒温器引入了一个可参数化的单一摩擦因子,以纠正IBI生成的力场中不符合物理规律的快速动力学。我们针对线性聚苯乙烯低聚物熔体研究了这种方法,该熔体有三个独立的系统,每条链分别有11、21和41个单体,且每个CG位点对应一个单体的映射。为了参数化摩擦因子,使用平移单体扩散、平移链扩散和旋转链运动从AA动力学中提取目标值,以测试不同运动模式下参数化的一致性。我们发现,使CG动力学与AA目标值一致所需的摩擦参数值会根据参数化模式而变化,短时间单体平移动力学需要最高值,长时间链平移动力学需要最低值,旋转动力学则介于两者之间。最短链的摩擦范围最广,且随着链长增加跨度变窄。对于较长的链,由于多种弛豫模式对链旋转的贡献以及这些中间摩擦水平下平移动力学缺乏敏感性,摩擦参数的实际工作值可以从旋转动力学中得出。对平衡链结构的研究表明,所有研究的链都是非高斯的。然而,较长的链比较短且更呈棒状的链更接近理想链尺寸,因此用单个摩擦参数描述最为合适。我们还发现保守势和耗散势的可分离性得以保留。

相似文献

本文引用的文献

4
Persistence Length, End-to-End Distance, and Structure of Coarse-Grained Polymers.无规聚合物的均方末端距、末端距分布和链段长度
J Chem Theory Comput. 2018 Apr 10;14(4):2219-2229. doi: 10.1021/acs.jctc.7b01229. Epub 2018 Mar 29.
9
Data-driven parameterization of the generalized Langevin equation.广义朗之万方程的数据驱动参数化
Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):14183-14188. doi: 10.1073/pnas.1609587113. Epub 2016 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验