Wu Zhenghao, Müller-Plathe Florian
Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 8, 64287 Darmstadt, Germany.
J Chem Theory Comput. 2022 Jun 14;18(6):3814-3828. doi: 10.1021/acs.jctc.2c00107. Epub 2022 May 26.
The topology of chains significantly modifies the dynamical properties of polymer melts. Here, we extend a recently developed efficient simulation method, namely the slip-spring hybrid particle-field (SS-hPF) model, to study the structural and dynamical properties of branched polymer melts over large spatial-temporal scales. In the coarse-grained SS-hPF simulation of polymers, the bonded potentials are derived by iterative Boltzmann inversion from the underlying fine-grained model. The nonbonded potentials are computed from a density functional field instead of pairwise interactions used in standard molecular dynamics simulations, which increases the computational efficiency by a factor of 10-20. The entangled dynamics is lost due to the soft-core nature of density functional field interactions. It is recovered by a multichain slip-spring model that is rigorously parametrized from existing experimental or simulation data. To quantitatively predict the relaxation and diffusion of branched polymers, which are dominated by arm retraction rather than chain reptation, the slip-spring algorithm is augmented to improve the polymer dynamics near the branch point. Multiple dynamical observables, e.g., diffusion coefficients, arm relaxations, and tube survival probabilities, are characterized in an example coarse-grained model of symmetric and asymmetric star-shaped polystyrene melts. Consistent dynamical behaviors are identified and compared with theoretical predictions. With a single rescaling factor, the prediction of diffusion coefficients agrees well with the available experimental measurements. In this work, an efficient approach is provided to build chemistry-specific coarse-grained models for predicting the dynamics of branched polymers.
链的拓扑结构会显著改变聚合物熔体的动力学性质。在此,我们扩展了一种最近开发的高效模拟方法,即滑移 - 弹簧混合粒子 - 场(SS - hPF)模型,以研究大时空尺度下支化聚合物熔体的结构和动力学性质。在聚合物的粗粒化SS - hPF模拟中,键合势通过从底层细粒化模型的迭代玻尔兹曼反演得到。非键合势由密度泛函场计算得出,而非标准分子动力学模拟中使用的成对相互作用,这将计算效率提高了10到20倍。由于密度泛函场相互作用的软核性质,缠结动力学丧失。通过一个从现有实验或模拟数据严格参数化的多链滑移 - 弹簧模型得以恢复。为了定量预测支化聚合物的弛豫和扩散,其主要由臂回缩而非链蠕动主导,对滑移 - 弹簧算法进行了改进以改善分支点附近的聚合物动力学。在一个对称和不对称星形聚苯乙烯熔体的示例粗粒化模型中,对多个动力学可观测量,如扩散系数、臂弛豫和管存活概率进行了表征。确定了一致的动力学行为并与理论预测进行了比较。通过单一的重标因子,扩散系数的预测与现有的实验测量结果吻合良好。在这项工作中,提供了一种有效的方法来构建特定化学的粗粒化模型,以预测支化聚合物的动力学。