Suppr超能文献

聚合物粘弹性粗粒化的能量重整化方法

Energy Renormalization Method for the Coarse-Graining of Polymer Viscoelasticity.

作者信息

Song Jake, Hsu David D, Shull Kenneth R, Phelan Frederick R, Douglas Jack F, Xia Wenjie, Keten Sinan

机构信息

Department of Materials Science & Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States.

Department of Physics and Engineering, Wheaton College, 501 College Avenue, Wheaton, Illinois 60187, United States.

出版信息

Macromolecules. 2018;51. doi: 10.1021/acs.macromol.7b02560.

Abstract

Developing temperature transferable coarse-grained (CG) models is essential for the computational prediction of polymeric glass-forming (GF) material behavior, but their dynamics are often greatly altered from those of all-atom (AA) models mainly because of the reduced fluid configurational entropy under coarse-graining. To address this issue, we have recently introduced an energy renormalization (ER) strategy that corrects the activation free energy of the CG polymer model by renormalizing the cohesive interaction strength as a function of temperature T, i.e., (T), thus semiempirically preserving the -dependent dynamics of the AA model. Here we apply our ER method to consider-in addition to T-dependency-the frequency -dependent polymer viscoelasticity. Through smallamplitude oscillatory shear molecular dynamics simulations, we show that changing the imposed oscillation on the CG systems requires changes in values (i.e., (, )) to reproduce the AA viscoelasticity. By accounting for the dynamic fragility of polymers as a material parameter, we are able to predict (, ) under coarse-graining in order to capture the AA viscoelasticity, and consequently the activation energy, across a wide range of and in the GF regime. Specifically, we showcase our achievements on two representative polymers of distinct fragilities, polybutadiene (PB) and polystyrene (PS), and show that our CG models are able to sample viscoelasticity up to the megahertz regime, which approaches state-of-the-art experimental resolutions, and capture results sampled via AA simulations and prior experiments.

摘要

开发温度可转移的粗粒化(CG)模型对于聚合物玻璃形成(GF)材料行为的计算预测至关重要,但其动力学通常与全原子(AA)模型有很大不同,主要是因为粗粒化下流体构型熵降低。为了解决这个问题,我们最近引入了一种能量重整化(ER)策略,通过将内聚相互作用强度重整化为温度T的函数,即(\epsilon(T)),来校正CG聚合物模型的活化自由能,从而半经验地保留AA模型的(\epsilon)依赖性动力学。在这里,我们应用我们的ER方法,除了考虑T依赖性之外,还考虑频率依赖性聚合物粘弹性。通过小振幅振荡剪切分子动力学模拟,我们表明改变施加在CG系统上的振荡频率(\omega)需要改变(\epsilon)值(即(\epsilon(\omega,T)))以重现AA粘弹性。通过将聚合物的动态脆性作为材料参数考虑在内,我们能够预测粗粒化下的(\epsilon(\omega,T)),以便在GF区域的广泛(\omega)和T范围内捕捉AA粘弹性,进而捕捉活化能。具体来说,我们展示了在两种具有不同脆性的代表性聚合物聚丁二烯(PB)和聚苯乙烯(PS)上的成果,并表明我们的CG模型能够对高达兆赫兹范围的粘弹性进行采样,这接近了当前的实验分辨率,并捕捉通过AA模拟和先前实验采样的结果。

相似文献

引用本文的文献

4
Using molecular simulation to understand the skin barrier.利用分子模拟理解皮肤屏障。
Prog Lipid Res. 2022 Nov;88:101184. doi: 10.1016/j.plipres.2022.101184. Epub 2022 Aug 19.

本文引用的文献

5
7
Coarse-Grained Modeling of Polyethylene Melts: Effect on Dynamics.粗粒化模型化聚乙烯熔体:对动力学的影响。
J Chem Theory Comput. 2017 Jun 13;13(6):2890-2896. doi: 10.1021/acs.jctc.7b00241. Epub 2017 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验