Suppr超能文献

使用放疗计划助手评估头颈部癌症自动化放疗计划的临床可接受性。

Clinical Acceptability of Automated Radiation Treatment Planning for Head and Neck Cancer Using the Radiation Planning Assistant.

机构信息

Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas.

Department of Radiation Oncology, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa.

出版信息

Pract Radiat Oncol. 2021 May-Jun;11(3):177-184. doi: 10.1016/j.prro.2020.12.003. Epub 2021 Feb 25.

Abstract

PURPOSE

Radiation treatment planning for head and neck cancer is a complex process with much variability; automated treatment planning is a promising option to improve plan quality and efficiency. This study compared radiation plans generated from a fully automated radiation treatment planning system to plans generated manually that had been clinically approved and delivered.

METHODS AND MATERIALS

The study cohort consisted of 50 patients treated by a specialized head and neck cancer team at a tertiary care center. An automated radiation treatment planning system, the Radiation Planning Assistant, was used to create autoplans for all patients using their original, approved contours. Common dose-volume histogram (DVH) criteria were used to compare the quality of autoplans to the clinical plans. Fourteen radiation oncologists, each from a different institution, then reviewed and compared the autoplans and clinical plans in a blinded fashion.

RESULTS

Autoplans and clinical plans were very similar with regard to DVH metrics for coverage and critical structure constraints. Physician reviewers found both the clinical plans and autoplans acceptable for use; overall, 78% of the clinical plans and 88% of the autoplans were found to be usable as is (without any edits). When asked to choose which plan would be preferred for approval, 27% of physician reviewers selected the clinical plan, 47% selected the autoplan, 25% said both were equivalent, and 0% said neither. Hence, overall, 72% of physician reviewers believed the autoplan or either the clinical or autoplan was preferable.

CONCLUSIONS

Automated radiation treatment planning creates consistent, clinically acceptable treatment plans that meet DVH criteria and are found to be appropriate on physician review.

摘要

目的

头颈部癌症的放射治疗计划是一个复杂的过程,存在很多变数;自动化治疗计划是提高计划质量和效率的一种有前途的选择。本研究比较了由专门的头颈部癌症治疗小组在三级护理中心治疗的 50 名患者的放射治疗计划。使用自动化放射治疗计划系统,即放射计划助手,为所有患者创建自动计划,使用他们的原始、批准的轮廓。使用常见的剂量-体积直方图 (DVH) 标准来比较自动计划和临床计划的质量。14 名来自不同机构的放射肿瘤学家以盲法方式审查和比较自动计划和临床计划。

结果

自动计划和临床计划在覆盖范围和关键结构限制的 DVH 指标方面非常相似。医生审阅者认为临床计划和自动计划都可以接受使用;总体而言,78%的临床计划和 88%的自动计划可以直接使用(无需任何编辑)。当被要求选择哪种计划更适合批准时,27%的医生审阅者选择临床计划,47%选择自动计划,25%表示两者同等,0%表示两者都不适合。因此,总体而言,72%的医生审阅者认为自动计划或临床计划或自动计划中的任何一种更可取。

结论

自动化放射治疗计划创建了一致的、临床可接受的治疗计划,符合 DVH 标准,并且在医生审查时被认为是合适的。

相似文献

1
Clinical Acceptability of Automated Radiation Treatment Planning for Head and Neck Cancer Using the Radiation Planning Assistant.
Pract Radiat Oncol. 2021 May-Jun;11(3):177-184. doi: 10.1016/j.prro.2020.12.003. Epub 2021 Feb 25.
2
Evaluating automatically generated normal tissue contours for safe use in head and neck and cervical cancer treatment planning.
J Appl Clin Med Phys. 2024 Jul;25(7):e14338. doi: 10.1002/acm2.14338. Epub 2024 Apr 12.
3
Automatic planning of head and neck treatment plans.
J Appl Clin Med Phys. 2016 Jan 8;17(1):272-282. doi: 10.1120/jacmp.v17i1.5901.
4
Assessing the practicality of using a single knowledge-based planning model for multiple linac vendors.
J Appl Clin Med Phys. 2022 Aug;23(8):e13704. doi: 10.1002/acm2.13704. Epub 2022 Jul 5.
5
Automated Hypofractionated IMRT treatment planning for early-stage breast Cancer.
Radiat Oncol. 2020 Mar 17;15(1):67. doi: 10.1186/s13014-020-1468-9.
6
Assessment of PlanIQ Feasibility DVH for head and neck treatment planning.
J Appl Clin Med Phys. 2017 Sep;18(5):245-250. doi: 10.1002/acm2.12165. Epub 2017 Aug 30.
7
A Step Toward Making VMAT TBI More Prevalent: Automating the Treatment Planning Process.
Pract Radiat Oncol. 2021 Sep-Oct;11(5):415-423. doi: 10.1016/j.prro.2021.02.010. Epub 2021 Mar 10.
8
Knowledge-based planning for the radiation therapy treatment plan quality assurance for patients with head and neck cancer.
J Appl Clin Med Phys. 2022 Jun;23(6):e13614. doi: 10.1002/acm2.13614. Epub 2022 Apr 30.
9
Evaluation of an automated knowledge based treatment planning system for head and neck.
Radiat Oncol. 2015 Nov 10;10:226. doi: 10.1186/s13014-015-0533-2.
10
Personalized automation of treatment planning in head-neck cancer: A step forward for quality in radiation therapy?
Phys Med. 2021 Feb;82:7-16. doi: 10.1016/j.ejmp.2020.12.015. Epub 2021 Jan 25.

引用本文的文献

2
Synthesizing Efficiency Tools in Radiotherapy to Increase Patient Flow: A Comprehensive Literature Review.
Clin Med Insights Oncol. 2024 Dec 13;18:11795549241303606. doi: 10.1177/11795549241303606. eCollection 2024.
4
Knowledge-based planning, multicriteria optimization, and plan scorecards: A winning combination.
Radiother Oncol. 2025 Jan;202:110598. doi: 10.1016/j.radonc.2024.110598. Epub 2024 Oct 28.
5
Remote radiotherapy treatment planning system: An efficiency tool for increasing patient flow in cancer treatment in South Africa.
Ann Med Surg (Lond). 2024 Sep 10;86(10):6355-6357. doi: 10.1097/MS9.0000000000002537. eCollection 2024 Oct.
6
Application and progress of artificial intelligence in radiation therapy dose prediction.
Clin Transl Radiat Oncol. 2024 May 9;47:100792. doi: 10.1016/j.ctro.2024.100792. eCollection 2024 Jul.
7
Evaluating automatically generated normal tissue contours for safe use in head and neck and cervical cancer treatment planning.
J Appl Clin Med Phys. 2024 Jul;25(7):e14338. doi: 10.1002/acm2.14338. Epub 2024 Apr 12.
9
Automatic end-to-end VMAT treatment planning for rectal cancers.
J Appl Clin Med Phys. 2024 Apr;25(4):e14259. doi: 10.1002/acm2.14259. Epub 2024 Feb 5.

本文引用的文献

1
Automatic Verification of Beam Apertures for Cervical Cancer Radiation Therapy.
Pract Radiat Oncol. 2020 Sep-Oct;10(5):e415-e424. doi: 10.1016/j.prro.2020.05.001. Epub 2020 May 23.
3
Automatic detection of contouring errors using convolutional neural networks.
Med Phys. 2019 Nov;46(11):5086-5097. doi: 10.1002/mp.13814. Epub 2019 Sep 26.
4
Evaluation of auto-planning in IMRT and VMAT for head and neck cancer.
J Appl Clin Med Phys. 2019 Jul;20(7):39-47. doi: 10.1002/acm2.12652. Epub 2019 Jul 4.
5
Automated treatment planning of postmastectomy radiotherapy.
Med Phys. 2019 Sep;46(9):3767-3775. doi: 10.1002/mp.13586. Epub 2019 Jul 9.
6
A risk assessment of automated treatment planning and recommendations for clinical deployment.
Med Phys. 2019 Jun;46(6):2567-2574. doi: 10.1002/mp.13552. Epub 2019 May 6.
10
Automatic treatment planning improves the clinical quality of head and neck cancer treatment plans.
Clin Transl Radiat Oncol. 2016 Sep 19;1:2-8. doi: 10.1016/j.ctro.2016.08.001. eCollection 2016 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验