Suppr超能文献

早期乳腺癌的自动化亚分次调强放疗计划。

Automated Hypofractionated IMRT treatment planning for early-stage breast Cancer.

机构信息

Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan.

Department of Medicine, China Medical University, Taichung, Taiwan.

出版信息

Radiat Oncol. 2020 Mar 17;15(1):67. doi: 10.1186/s13014-020-1468-9.

Abstract

BACKGROUND

Hypofractionated whole-breast irradiation is a standard adjuvant therapy for early-stage breast cancer. This study evaluates the plan quality and efficacy of an in-house-developed automated radiotherapy treatment planning algorithm for hypofractionated whole-breast radiotherapy.

METHODS

A cohort of 99 node-negative left-sided breast cancer patients completed hypofractionated whole-breast irradiation with six-field IMRT for 42.56 Gy in 16 daily fractions from year 2016 to 2018 at a tertiary center were re-planned with an in-house-developed algorithm. The automated plan-generating C#-based program is developed in a Varian ESAPI research mode. The dose-volume histogram (DVH) and other dosimetric parameters of the automated and manual plans were directly compared.

RESULTS

The average time for generating an autoplan was 5 to 6 min, while the manual planning time ranged from 1 to 1.5 h. There was only a small difference in both the gantry angles and the collimator angles between the autoplans and the manual plans (ranging from 2.2 to 5.3 degrees). Autoplans and manual plans performed similarly well in hotspot volume and PTV coverage, with the autoplans performing slightly better in the ipsilateral-lung-sparing dose parameters but were inferior in contralateral-breast-sparing. The autoplan dosimetric quality did not vary with different breast sizes, but for manual plans, there was worse ipsilateral-lung-sparing (V) in larger or medium-sized breasts than in smaller breasts. Autoplans were generally superior than manual plans in CI (1.24 ± 0.06 vs. 1.30 ± 0.09, p < 0.01) and MU (1010 ± 46 vs. 1205 ± 187, p < 0.01).

CONCLUSIONS

Our study presents a well-designed standardized fully automated planning algorithm for optimized whole-breast radiotherapy treatment plan generation. A large cohort of 99 patients were re-planned and retrospectively analyzed. The automated plans demonstrated similar or even better dosimetric quality and efficacy in comparison with the manual plans. Our result suggested that the autoplanning algorithm has great clinical applicability potential.

摘要

背景

适形分割全乳放疗是早期乳腺癌的标准辅助治疗方法。本研究评估了一种内部开发的适形分割全乳放疗自动化治疗计划算法在适形分割全乳放疗中的计划质量和疗效。

方法

2016 年至 2018 年,在一家三级中心,99 例左侧淋巴结阴性乳腺癌患者完成了适形分割全乳放疗,6 野调强放疗,总剂量 42.56Gy,16 次分割。使用内部开发的算法对这些患者重新进行计划。基于 C#的自动计划生成程序是在瓦里安 ESAPI 研究模式下开发的。直接比较自动计划和手动计划的剂量体积直方图(DVH)和其他剂量学参数。

结果

生成自动计划的平均时间为 5 至 6 分钟,而手动计划时间从 1 至 1.5 小时不等。自动计划和手动计划的机架角度和准直器角度仅略有差异(范围为 2.2 至 5.3 度)。自动计划和手动计划在热点体积和 PTV 覆盖方面表现相似,自动计划在同侧肺保护剂量参数方面表现稍好,但在对侧乳房保护方面稍差。自动计划的剂量学质量与不同的乳房大小无关,但对于手动计划,较大或中等大小乳房的同侧肺保护(V)比较小乳房差。自动计划在 CI(1.24±0.06 对 1.30±0.09,p<0.01)和 MU(1010±46 对 1205±187,p<0.01)方面普遍优于手动计划。

结论

我们的研究提出了一种设计良好的标准化全自动计划算法,用于优化全乳放疗治疗计划的生成。对 99 例患者进行了重新计划和回顾性分析。与手动计划相比,自动计划在剂量学质量和疗效方面表现相似或更好。我们的结果表明,自动计划算法具有很大的临床应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16dd/7077022/a1e479df3b92/13014_2020_1468_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验