State Key Laboratory of Agrobiotechnology, College of Grassland Sciences, China Agricultural University, Beijing, China.
State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
J Exp Bot. 2021 May 4;72(10):3661-3676. doi: 10.1093/jxb/erab093.
The multimember CEP (C-terminally Encoded Peptide) gene family is a complex group that is involved in various physiological activities in plants. Previous studies demonstrated that MtCEP1 and MtCEP7 control lateral root formation or nodulation, but these studies were based only on gain of function or artificial miRNA (amiRNA)/RNAi approaches, never knockout mutants. Moreover, an efficient multigene editing toolkit is not currently available for Medicago truncatula. Our quantitative reverse transcription-PCR data showed that MtCEP1, 2, 4, 5, 6, 7, 8, 9, 12, and 13 were up-regulated under nitrogen starvation conditions and that MtCEP1, 2, 7, 9, and 12 were induced by rhizobial inoculation. Treatment with synthetic MtCEP peptides of MtCEP1, 2, 4, 5, 6, 8, and 12 repressed lateral root emergence and promoted nodulation in the R108 wild type but not in the cra2 mutant. We optimized CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9] genome editing system for M. truncatula, and thus created single mutants of MtCEP1, 2, 4, 6, and 12 and the double mutants Mtcep1/2C and Mtcep5/8C; however, these mutants did not exhibit significant differences from R108. Furthermore, a triple mutant Mtcep1/2/12C and a quintuple mutant Mtcep1/2/5/8/12C were generated and exhibited more lateral roots and fewer nodules than R108. Overall, MtCEP1, 2, and 12 were confirmed to be redundantly important in the control of lateral root number and nodulation. Moreover, the CRISPR/Cas9-based multigene editing protocol provides an additional tool for research on the model legume M. truncatula, which is highly efficient at multigene mutant generation.
多成员 CEP(C 端编码肽)基因家族是一个复杂的群体,参与植物的各种生理活动。先前的研究表明 MtCEP1 和 MtCEP7 控制侧根形成或结瘤,但这些研究仅基于功能获得或人工 miRNA(amiRNA)/RNAi 方法,从未有过敲除突变体。此外,目前没有有效的多基因编辑工具包可用于蒺藜苜蓿。我们的定量逆转录-PCR 数据显示,MtCEP1、2、4、5、6、7、8、9、12 和 13 在氮饥饿条件下上调,MtCEP1、2、7、9 和 12 被根瘤菌接种诱导。MtCEP1、2、4、5、6、8 和 12 的合成 MtCEP 肽处理抑制了 R108 野生型的侧根萌发并促进了结瘤,但在 cra2 突变体中没有。我们优化了蒺藜苜蓿的 CRISPR/Cas9 [成簇的规则间隔的短回文重复序列(CRISPR)/CRISPR 相关蛋白 9] 基因组编辑系统,从而创建了 MtCEP1、2、4、6 和 12 的单突变体以及 Mtcep1/2C 和 Mtcep5/8C 的双突变体;然而,这些突变体与 R108 没有明显的差异。此外,还生成了 Mtcep1/2/12C 三重突变体和 Mtcep1/2/5/8/12C 五重突变体,它们表现出比 R108 更多的侧根和更少的结瘤。总的来说,MtCEP1、2 和 12 被证实对侧根数量和结瘤的控制具有重要的冗余作用。此外,基于 CRISPR/Cas9 的多基因编辑方案为模式豆科植物蒺藜苜蓿的研究提供了另一种工具,该方法在多基因突变体生成方面效率非常高。