Gao Jin-Peng, Su Yangyang, Jiang Suyu, Liang Wenjie, Lou Zhijun, Frugier Florian, Xu Ping, Murray Jeremy D
CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), CAS Center for Excellence in Molecular and Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China.
Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, CB3 0LE UK.
aBIOTECH. 2024 Dec 16;6(2):346-360. doi: 10.1007/s42994-024-00190-4. eCollection 2025 Jun.
The advent of genome editing technologies, particularly CRISPR/Cas9, has significantly advanced the generation of legume mutants for reverse genetic studies and understanding the mechanics of the rhizobial symbiosis. The legume-rhizobia symbiosis is crucial for sustainable agriculture, enhancing nitrogen fixation and improving soil fertility. Numerous genes with a symbiosis-specific expression have been identified, sometimes exclusively expressed in cells forming infection threads or in nitrogen-fixing nodule cells. Typically, mutations in these genes do not affect plant growth. However, in some instances, germline homozygous mutations can be lethal or result in complex pleiotropic phenotypes that are challenging to interpret. To address this issue, a rhizobia-inducible and cell-type-specific CRISPR/Cas9 strategy was developed to knock-out genes in specific legume transgenic root tissues. In this review, we discuss recent advancements in legume genome editing, highlighting the cell-type-specific CRISPR system and its crucial applications in symbiotic nitrogen fixation and beyond.
基因组编辑技术的出现,尤其是CRISPR/Cas9技术,极大地推动了豆科植物突变体的产生,用于反向遗传学研究以及理解根瘤菌共生机制。豆科植物与根瘤菌的共生关系对于可持续农业至关重要,它能增强固氮作用并提高土壤肥力。已鉴定出许多具有共生特异性表达的基因,这些基因有时仅在形成感染丝的细胞或固氮根瘤细胞中表达。通常,这些基因的突变不会影响植物生长。然而,在某些情况下,生殖系纯合突变可能是致命的,或者会导致复杂的多效性表型,难以解释。为了解决这个问题,开发了一种根瘤菌诱导型和细胞类型特异性的CRISPR/Cas9策略,用于在特定豆科植物转基因根组织中敲除基因。在这篇综述中,我们讨论了豆科植物基因组编辑的最新进展,重点介绍了细胞类型特异性CRISPR系统及其在共生固氮及其他方面的关键应用。